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Foreword 

 

This report has been produced under contract by the British Geological Survey (BGS), as an 

addendum to the Weald Basin study (Andrews, 2014). It is based on a recent analysis of all available 

information, together with published data and interpretations.  

Additional information is available at the Oil and Gas Authority (OGA) website. 

https://www.ogauthority.co.uk/exploration-production/onshore/. This includes licensing 

regulations, maps, monthly production figures, basic well data and where to view and purchase 

data. Shale oil/gas related issues including hydraulic fracturing, induced-seismicity risk mitigation 

and the information regarding the onshore regulatory framework can also be found on this 

webpage. 

Interactive maps, with licence data, seismic, relinquishment reports and stratigraphic tops for many 

wells are available at www.ukogl.org.uk.  

A glossary of terms used and equivalences is tabled at the end of the report (see page 62). 

All of the detailed figures in this report are attached in A4 or larger format (Appendix C); 

thumbnails are also included in the text for reference. 
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1 Summary 
This report on the Jurassic shale oil and gas potential of the Wessex area follows previous 

assessments of the potential distribution and in-place resource for shale oil and gas onshore UK 

(Figure 1), including the Carboniferous shales of the Midland Valley of Scotland (Monaghan, 2014), 

the Carboniferous shales of the Bowland-Hodder (Andrews, 2013), and the Jurassic shales of the 

Weald (Andrews, 2014); it is intended as an addendum to the Weald Basin report. Following the 

methodology used in the assessment of the Weald Basin (Andrews, 2014), a preliminary in-place oil 

resource calculation has been performed for the main Jurassic shale intervals in the Wessex area. As 

in the Weald Basin, no significant shale gas resource is recognised in the Jurassic of the Wessex area. 

The resource assessment is of the hydrocarbons present in shale strata and does not include 

volumes which have migrated into potential tight conventional or hybrid plays.  

The study area has a long history of conventional hydrocarbon exploration and production, with 

exploration activity since the 1930s (Lees & Cox, 1937), and first production in 1961 from the 

Kimmeridge Oilfield. The Wytch Farm Oilfield in Dorset lies within the Wessex area and is the largest 

onshore oil accumulation in North-West Europe. Two other oil fields – Waddock Cross and Wareham 

– are also situated within the study area.  

The Wessex study area lies immediately to the west of the Weald Basin, and is composed of several 

fault-controlled sub-basins and highs (Chadwick, 1986). The Jurassic sedimentary section is 

composed of six shallowing-upward sequences of marine shales and siltstones capped by sandstones 

or limestones (Hawkes et al., 1998). The area has a complex tectonic history and has experienced 

two significant phases of uplift and erosion – one in the Aptian-Albian, and a Tertiary phase 

associated with Alpine compression (Lake & Karner, 1987; Butler, 1998; Underhill & Stoneley, 1998). 

These events have led to a considerable amount of missing Late Jurassic – Early Cretaceous and 

Tertiary section across much of the area.  

Five marine shale units within the Jurassic of the Wessex area are the focus of this study: the Lower, 

Middle and Upper Lias (Lower Jurassic), the Oxford Clay (Middle-Upper Jurassic) and the Kimmeridge 

Clay (Upper Jurassic). The amount of organic matter in these units varies across the area, both 

laterally and temporally. Organic-rich shales (with total organic carbon (TOC) > 2%) occur regionally 

in the Kimmeridge Clay, in the lower section of the Oxford Clay and in the Lower Lias. The most 

significant shales in terms of TOC and S2 are the Kimmeridge Clay and all five shale intervals that 

comprise the Lower Lias. A distinct difference to the Weald Basin is the organic richness of the Lower 

Lias; the previous study identified only limited potential in this interval, yet in the Wessex area there 

are rich source intervals throughout the strata. The contrast in organic richness and lithology 

between the Wessex and Weald areas may be due to differences in palaeogeography and organic 

input or preservation. Although both the Upper and Middle Lias have well-developed clay intervals, 

potential in these sections is more limited. 

The maturity of the shales is a function of burial depth and heat flow through time. In the Weald 

study (Andrews, 2014), the Jurassic shales are considered mature for oil generation at vitrinite 

reflectance, Ro, values between 0.6% and 1.1% at maximum burial depths between approximately 

7000-8000 ft (2130-2440 m) and 12000-13000 ft (3660-3960 m) below surface; analysis of available 

vitrinite reflectance and Tmax data for the study suggest that these depths are also applicable to the 
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Wessex area. Shales in the Wessex area may have experienced up to 6900 ft (2100 m) of uplift 

(England, 2010) during the two significant uplift and erosion events in the Cretaceous and Tertiary. 

Burial depths indicate that only the Lower Lias in the Channel Basin, south of the Purbeck-Isle of 

Wight Disturbance, may be in the oil window present-day; however, palaeo-temperature data 

suggest the rocks reached higher maturity during the time of maximum burial attained prior to the 

uplift/erosion events. In the model presented here, accounting for maximum burial depth, only the 

deepest interval – the  Lower Lias – is considered to have potential for oil in terms of source rock 

richness and (palaeo-) maturity, and only in a localised area, largely south of the Purbeck-Isle of 

Wight Disturbance. The existence of a mature source rock which has generated and expelled 

hydrocarbons, at least locally within the area, is supported by the presence of oil in conventional 

reservoirs that has been correlated to Lower Lias source rocks (Colter & Havard, 1981; England, 

2010). Although minor amounts of gas have been produced at Wytch Farm and gas shows have been 

encountered in several onshore wells, the Lower Lias is not considered to ever have been sufficiently 

deeply buried to have generated significant amounts of gas onshore. Well 98/11-2 in Bournemouth 

Bay encountered dry gas in the Sherwood Sandstone (P1022 Relinquishment Document, 2009) and a 

thermogenic gas seep offshore at Anvil Point on the Dorset coast (Selley, 1992; Selley, 2012; APT UK 

Ltd., 2013) indicates that the Lower Lias maturity may increase into the Channel Basin depocentre. 

Shales with an oil saturation index (Jarvie, 2012) of greater than 100 are identified in all of the 

intervals of the Lower Lias, and therefore can be considered to have excellent source potential. 

Interpreting the presence of producible oil in the organic-rich shales allows for an in-place resource 

volume to be calculated with a broad range of probabilities. The determination of oil-in-place was 

undertaken using the same methodology applied in the Weald study (Andrews, 2014) and is 

described in detail in Andrews et al. (2014). The total volume of potentially productive shale in the 

Wessex area was estimated using a 3D geological model built using seismic mapping integrated with 

well data. This gross volume was then reduced to a net mature organic-rich shale volume using a 

maximum, pre-uplift burial depth corresponding to a vitrinite reflectance of 0.6% (modelled at 7000 

ft/2130 m and 8000 ft/2440 m). A further upwards truncation was then applied at two alternative 

levels – firstly at a depth of c. 3950 ft (1200 m) and secondly at a depth of c. 5000 ft (1500 m) (as 

proposed by Charpentier & Cook, 2011) below surface. A first truncation value of c. 3950 ft (1200 m) 

was used for this study (as opposed to c. 3000 ft (1000 m) used in the Weald study) due to recent 

legislation in the Infrastructure Act 2015 stating that hydraulic fracturing (fracking) is permitted only 

at depths greater than 1200 m below National Parks, groundwater source protection zones 1, World 

Heritage Sites and Areas of Outstanding Natural Beauty, which together cover most of the 

prospective area. These cut-offs are applied regionally; the depth at which shale oil (or shale gas) 

productivity becomes an issue in terms of pressure and hydrogeology will need to be addressed 

locally. 

The volumes of potentially productive shale and average oil yields were used as the input 

parameters for a statistical calculation (using a Monte Carlo simulation, in which all the parameters 

were varied within their set distributions over 50,000 iterations) of the in-place oil resource (see 

Andrews, 2014). The results of the two scenarios modelled for each unit are presented in Table 1. 

This study offers a range of total in-place oil resource estimates for the various Jurassic shales of the 

Wessex area of 0.2-1.1-2.8 billion bbl (32-149-378 million tonnes) (P90-P50-P10). It should be  
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Figure 1. Location of the BGS/OGA Wessex study area in southern Britain, with previous BGS/DECC 

shale study areas, currently licensed blocks and hydrocarbon fields. Other shale oil and shale gas 

plays may exist. 
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emphasised that these ‘oil-in-place’ figures refer to an estimate for the entire volume of oil 

contained in the rock formation, not how much can be recovered. A more refined methodology, like 

the USGS’s Technically Recoverable Resource “top-down” estimates, requires production data from 

wells, as yet unavailable for the study area.  

Given the paucity of data, there is a high degree of uncertainty in these figures. There is likely to be 

little or no ‘free oil’ for the Oxford Clay, Upper Lias and Middle Lias based on the oil saturation index 

and although the Kimmeridge Clay does show excellent source potential, it is likely to be immature 

regionally. The Lower Lias appears to be the only interval with shale oil potential onshore, albeit with 

relatively small volumes in a localised area largely south of the Purbeck-Isle of Wight Disturbance. 

 

 Total oil in-place estimates (billion bbl) Total oil in-place estimates (million tonnes) 

With top of oil 
window at 7000 ft 

(2130 m) maximum 
burial depth 

With top of oil 
window at 8000 ft 

(2440 m) maximum 
burial depth 

With top of oil 
window at 7000 ft 

(2130 m) maximum 
burial depth 

With top of oil 
window at 8000 ft 

(2440 m) maximum 
burial depth 

Kimmeridge Clay 0.00 – 0.01 – 0.04 0.00 – 0.00 – 0.00 0.24 – 1.50 – 4.77 0.00 – 0.00 – 0.00 

Oxford Clay 0.00 – 0.01 – 0.03 0.00 – 0.00 – 0.00 0.20 – 1.17 – 3.52 0.01 – 0.06 – 0.19 

Upper Lias Clay 0.00 – 0.00 – 0.01 0.00 – 0.00 – 0.00 0.12 – 0.39 – 1.00 0.03 – 0.09 – 0.20 

Middle Lias Clay 0.01 – 0.03 – 0.08 0.00 – 0.01 – 0.02 1.31 – 4.38 – 11.53 0.38 – 1.21 – 2.93 

Lower Lias  0.52 – 1.34 – 2.70 0.22 – 0.55 – 1.08 71.5 – 182.8 – 368.4 30.0 – 75.2 – 147.3 

All Jurassic clay 
units - Wessex 

0.2 – 1.1 – 2.8 32 – 149 – 378 

Kimmeridge Clay 0.41 – 2.03 – 4.77 0.11 – 0.61 – 1.44 55 – 270 – 636 15 – 81 – 192 

Corallian Clay 0.20 – 0.52 – 1.04 0.11 – 0.30 – 0.61 27 – 69 – 139 15 – 40 – 81 

Oxford Clay 0.59 – 1.39 – 2.46 0.41 – 0.96 – 1.70 79 – 185 – 328 55 – 128 – 227 

Upper Lias Clay 0.28 – 0.63 – 1.05 0.22 – 0.52 – 0.85 37 – 84 – 140 29 – 69 – 113 

Middle Lias Clay 0.33 – 0.79 – 1.43 0.27 – 0.64 – 1.15 44 – 105 – 191 36 – 85 – 153 

All Jurassic clay 
units - Weald 

2.2 – 4.4 – 8.6 293 – 591 – 1143 

 

Table 1. Estimates of the total potential in-place shale oil resource for the Jurassic in the Wessex 

study area (top) and in the Weald Basin (bottom, from Andrews (2014)), onshore southern England. 

P90, P50 and P10 values are given for each unit, where P10 is the most optimistic scenario. This 

estimate only covers unconventional oil, and excludes volumes in potential tight conventional or 

hybrid plays.  
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2 Introduction to the Wessex Study Area 
2.1 Area of Interest 

This study is an extension to the assessment of the in-place reserves of the Jurassic shales in the 

Weald Basin (Andrews, 2014). This assessment covers an area of 2455 miles2 (6359 km2) 

immediately west of the Weald Basin study (Figure 2) from the New Forest (Hampshire) to Honiton 

(East Devon). The area contains several sites which are considered protected areas for hydraulic 

fracturing under the Infrastructure Act 2015, including the Dorset Coast which is designated a World 

Heritage Site, groundwater source protection zones, the New Forest National Park, and the Isle of 

Wight, Dorset and Cranborne Chase, and West Wiltshire Downs Areas of Outstanding Natural Beauty 

(Figure 3). In these regions fracking can only take place at a minimum depth of c. 3950 ft (1200 m) 

below the surface.  

This study is concerned only with a subsection of the onshore portion of the Wessex Basin, which is 

termed in this report the ‘Wessex study area’. The Wessex study area encompasses three half-

graben sub-basins – the Dorset (or Winterbourne Kingston Trough), Mere (or Vale of Wardour), and 

the onshore part of the Channel (or Portland-Wight) sub-basins – which together, along with the 

Pewsey Sub-basin, comprise the Wessex Basin (as defined by Underhill & Stoneley, 1998; see Section 

3.5.1 of Andrews (2014) for a discussion of the terminology). The Pewsey Sub-basin was included in 

the Weald evaluation, as it can be considered a westward continuation of the Weald Basin 

(Andrews, 2014). 

2.2 Interval of Interest 

Shales of Jurassic age are the focus of this study. Source richness of Cretaceous-aged sediments has 

been identified in limestones of the Purbeck Group (Riboulleau et al., 2007; Schnyder et al., 2009), 

but are not prospective due to their immaturity basin-wide (England, 2010). There are no pre-

Jurassic rocks with significant hydrocarbon potential identified within the study area (Stoneley, 

1992), although organic-rich shales within the Triassic Mercia Mudstone Group were encountered in 

the Kimmeridge 5 well (Brand, 1980). To the west of the study area, around the Bristol Channel, dark 

shales of the Triassic Westbury Formation may contain some organic-rich intervals (Macquaker et 

al., 1986; Tuweni & Tyson, 1994). Knowledge of the Jurassic section within the study area comes 

from a number of wells which have penetrated the interval. The full Jurassic succession crops out 

within the study area (Figure 4), providing additional insight into lithology and facies variability. 

Three main source rock intervals have been identified – the Lower Lias, Oxford Clay and Kimmeridge 

Clay – whilst additional potential may exist in other shale units, including the Middle Lias Eype Clay 

and Upper Lias Downcliff Clay (Figure 5). 

2.3 Exploration History 

Oil and gas exploration in the Wessex area began in the 1930s when geologists from D’Arcy 

Exploration discovered oil seeps in Corallian, Purbeck and Wealden beds along the Dorset coast 

(Lees & Cox, 1937). After the 1934 Petroleum Production Act came into force, the first exploration 

licenses were issued in 1935 to D’Arcy Exploration (Evans et al., 1998), with early exploration 
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targeting anticlinal structures which had been mapped at surface (Buchanan, 1998). Since then (as of 

March 2016), there have been a total of 301 hydrocarbon wells drilled in the Wessex area,  

consisting of 77 exploration, 10 appraisal and 214 development wells. No unconventional or hybrid-

play wells have so far been drilled within the study area. 

2.3.1 Oil Fields 

There are four oil fields within the study area, including the largest onshore oil field in North-West 

Europe, Wytch Farm. The other fields are Kimmeridge, Wareham and Waddock Cross (Figure 6); all  

Figure 2. (Top) Location of the BGS/DECC shale oil Weald Basin study and the BGS/OGA 

Wessex study area, southern Britain. (Bottom) Zoom-in of location of the Wessex study area. 

Contains Ordnance Survey data © Crown copyright and database right 2016. 
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fields are located in the northern part of the Channel Basin, close to the Portland-Isle of Wight fault 

system, on Jurassic – Early Cretaceous palaeo-highs. Wytch Farm and Wareham are interpreted to  

have been charged by upwards and cross-fault migration of oil from mature Lower Liassic source 

rocks situated on the downthrown (south) side of the Purbeck-Isle of Wight fault system, prior to 

Cretaceous and Tertiary uplift (Underhill & Stoneley, 1998; Buchanan, 1998; Scotchman, 2001). The 

Kimmeridge field is unique in being the only commercial discovery in a trap created by Tertiary 

structural inversion and the only producing field in the hanging wall of the Purbeck-Isle of Wight 

Disturbance (Evans et al., 1998; Hawkes et al., 1998; Gluyas et al., 2003). So far, of the four sub-

basins in the Wessex Basin (sensu Underhill & Stoneley, 1998), only the Channel Basin has proved a 

viable petroleum system (DECC, 2013). 

The Wytch Farm structure is an east-west trending fault block bounded to the south by a normal 

fault down-thrown to the south, with minor faults to the north, east and west (Colter & Havard, 

1981). The initial discovery well, Wytch Farm 1, was drilled by Gas Council (Exploration) in 1973 and 

encountered light oil in the Bridport Sands and oil shows in the Cornbrash. Wytch Farm D5, drilled in 

1977, was the first test of the deeper Triassic Sherwood (Bunter) Sandstone and discovered light oil  

Figure 3. Areas considered to be protected under the 2015 Infrastructure Act, where hydraulic 

fracturing (fracking) may only be permitted at burial depths of 1200 m (c. 3950 ft) or greater. 

Background is shaded-relief topography. Contains Ordnance Survey data © Crown copyright and 

database right (2016). Data sources: Areas of Outstanding Natural Beauty & National Parks © 

Natural England copyright, 2016. Contains Ordnance Survey data © Crown copyright and 

database right (2016); World Heritage Sites © Historic England (2016). Contains Ordnance Survey 

data © Crown copyright and database right (2016) The Historic England GIS Data contained in 

this material was obtained on 21/04/2016. The most publicly available up to date Historic 

England GIS Data can be obtained from http://www.HistoricEngland.org.uk; Groundwater Source 

Protection Zones (SPZ) © Environment Agency copy right and/or database right 2016. 
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in that interval (Colter & Havard, 1981). In addition to the Bridport Sands and Sherwood Sandstone 

reservoir intervals, oil shows are present in the Cornbrash and Forest Marble associated with vugs 

and fractures (Colter & Havard, 1981). Since production began in 1979, 200 wells have been drilled 

in the Wytch Farm Oilfield, which has produced approximately 76x106 m3 oil and 4x106 m3 gas 

(figures from OGA, Feb 2016; more recent production figures are available at 

https://www.ogauthority.co.uk/data-centre/data-downloads-and-publications/production-data/). 

Coupled with the offshore extensions, the Wytch Farm Oilfield is estimated to contain 500 mmbbls 

recoverable reserves (DECC, 2013). 

The oldest commercial hydrocarbon discovery in the Wessex area is the Kimmeridge Oilfield (Evans 

et al., 1998; Gluyas et al., 2003). It was discovered by the BP-operated Kimmeridge 1 well in 1959, 

testing a large surface anticline (Colter & Havard, 1981). The trap is a faulted inversion anticline, 

formed in the Tertiary, immediately to the south (on the downthrown side) of the Purbeck-Isle of 

Wight Disturbance (Evans et al., 1998; Gluyas et al., 2003). Production is from underpressured, 

fractured tight limestones in the Cornbrash (Colter & Havard, 1981; Selley & Stoneley, 1987; Gluyas 

et al., 2003). Following the Wytch Farm discovery, Kimmeridge 5 was drilled in 1980 as a test of the 

deeper potential at the Kimmeridge Oilfield (Evans et al., 1998; Gluyas et al., 2003), recording oil 

shows in the Bridport Sands and Sherwood Sandstone. Produced volumes at the Kimmeridge Oilfield 

have exceeded the estimated trap volume, with several theories developed to explain this (Selley & 

Stoneley, 1987; Evans et al., 1998).  It has been proposed that the field is receiving charge from a 

deeper reservoir present-day (Selley & Stoneley, 1987) although Evans et al. (1998) argue that the 

production decline curve does not support this. Alternatively, additional reserves may be trapped 

either offshore in an unmapped extension (Evans et al., 1998; Gluyas et al., 2003), the fracture 

system may extend the reservoir into the Oxford Clay (Evans et al., 1998) or the Cornbrash reservoir 

may be actively recharging from a mature lower Oxford Clay source (Fraser & Aryanto, in prep). 

Figure 4. Surface geology of the study area with hill-shaded relief, with the Wessex study area 

(shown in pink). Surface geology from BGS 1:50,000 scale DiGMapGB © NERC. 

https://www.ogauthority.co.uk/data-centre/data-downloads-and-publications/production-data/
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Wareham 1, drilled by BP in 1964, encountered oil in a thin fractured Inferior Oolite interval and at 

the top of the Bridport Sands (Colter & Havard, 1981). The well was initially interpreted to have 

failed to locate pay, but was subsequently re-evaluated, re-entered and tested in 1970 (Hurst & 

Colter, 1998). Wareham 2, drilled downdip from Wareham 1, produced oil from the Cornbrash after 

acid wash treatment (Colter & Havard, 1981).  Good oil shows were encountered in Wareham W2 

(D5), drilled by Gas Council (Exploration) in 1980, in the Inferior Oolite and Bridport Sands, with 

additional gas shows in the Oxford Clay, Kellaways, Cornbrash, Forest Marble, and Fuller’s Earth 

Figure 5. Generalised stratigraphic column for the Jurassic of the Wessex area showing the main 

source rock intervals (in red) and other potential source rock intervals (in pink). Adapted from 

Andrews (2014). 
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formations. To date, less than 0.7 x 106 m3 oil has been produced from the Wareham field (data from 

OGA, Feb 2016). 

Waddock Cross 1 was drilled by Gas Council (Exploration) in 1982, and produced oil at sub-

commercial flow rates from the Bridport Sandstone. The structure, a low-relief closure with four-way 

dip, was re-evaluated in 2003 by Egdon Resources with the drilling of Waddock Cross 2, which 

discovered a gross oil column of c. 78 ft (24 m) in the Bridport Sandstone (Waddock Cross 2 Wellsite 

Geological Report, 2004) and began producing in 2013. 

2.3.2 Other Hydrocarbon Indications 

Alongside the producing fields, numerous other wells in the Wessex area have encountered 

hydrocarbon shows (Figure 6), giving further indication of an active petroleum system. On the Isle of 

Wight the Arreton 2 well, drilled in 1974 by Gas Council (Exploration), was completed as a dry hole 

but encountered dead oil staining in several intervals. This suggests that the structures in the 

Jurassic have been flushed, possibly as a result of late faulting/folding (Gas Council Exploration, 

1974). UK Oil & Gas Investments (UKOG) have re-evaluated the Arreton 2 data and interpreted it to 

be an undeveloped oil discovery, with 78 ft (23.8 m) oil pay in the Portland and 127 ft (38.7 m) oil 

pay in the Inferior Oolite, and a P50 oil-in-place volume of 219 mmbbl in the whole Arreton structure 

(UKOG press release, 2016).  

Also on the Isle of Wight, but to the north of the Purbeck-Isle of Wight Disturbance, minor oil shows 

were encountered largely within limestones of the Great Oolite Group in Sandhills 1 (drilled in 1982), 

and Sandhills 2/2z (drilled in 2005). Geochemical analysis of samples from Sandhills 2/2Z indicates 

that the oil is residual and highly biodegraded (GHGeochem, 2005).  

Figure 6. Distribution of producing oil fields, discovery wells and well with hydrocarbon shows 

within the study area, based on well reports and published literature. Also shown are areas 

currently licensed or offered for award for exploration, and main BGS structural elements 

(British Geological Survey, 1996). Contains British Geological Survey materials © NERC (2016).  
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The Bushey Farm A1 well (and sidetrack A1Z) drilled by British Gas in 1981, was classified as a dry 

hole although light, low sulphur oil was encountered in the top of the Bridport Sandstone reservoir 

(Johnson & Lister, 1981). Oil was also found in the Bridport Sandstone reservoir within the Coombe 

Keynes 1 well, which additionally encountered small amounts of biodegraded oil within the Oxford 

Clay and Lower Lias; the biodegraded oils were of a similar type and maturity to the non-

biodegraded oil within the reservoir (McQullken & Cocksedge, 1989).  Geochemical analysis 

indicates the oil found in minor shows at Chickerell 1 (Forbes, 1987), Coombe Keynes 1 (McQullken 

& Cocksedge, 1989) and Bushey Farm A1 (Johnson & Lister, 1981) is derived from the same or similar 

source as the oil at the Wytch Farm, Wareham and Kimmeridge oil fields. Forbes (1987) found a 

good correlation between the oils and Lower Lias source rocks in the Chickerell 1 well, although the 

Lower Lias is immature at the well location.  

High levels of gas (C1-C5) were encountered in the Lower Lias mudstones of the Hewish 1 well, 

although the target reservoir interval, the Sherwood Sandstone, was water wet. Elevated gas 

readings were common throughout the Jurassic and in the Triassic Sherwood Sandstone at Southard 

Quarry 1. However, despite log interpretations indicating the presence of hydrocarbons in the target 

reservoir intervals, poor hole conditions prevented open hole testing for a full assessment of the 

potential (Bromfield, 1990). Lulworth Banks 1, drilled offshore in Quadrant 97 but on an onshore 

license, discovered uncommercial gas in sandstones of the Bridport and Kellaways formations (DECC, 

2014). Also offshore, in Bournemouth Bay, Well 98/11-2 was a sub-commercial gas discovery, with 

the Sherwood Sandstone as the main reservoir interval (BP, 2011). 

2.4 Seeps 

As previously mentioned, surface oil seepages along the Dorset coast gave exploration geologists an 

initial indication of an active petroleum system in the Wessex area (Lees & Cox, 1937) and have 

subsequently been reported at several locations on the coast, including at Osmington Mills, 

Worbarrow Bay, Mupe Bay, Lulworth Cove and Durdle Door (Ebukanson & Kinghorn, 1986b; Selley, 

1992; Bigge & Farrimond, 1998; Underhill & Stoneley, 1998; Hawkes et al., 1998; Watson et al., 

2000). The seeps are limited to where Jurassic – Early Cretaceous beds dip north into major faults 

(Selley & Stoneley, 1987). The cliff section of the Bencliff Grits (Middle Oxfordian age) at Osmington 

Mills is dominated by oil-stained sandstones (Watson et al., 2000), and an oil-water contact has been 

identified within the section (Cornford et al., 1988); Watson et al (2000) proposed that this is the 

remnant of a breached trap. In addition, thermogenic gas seeps have been reported from the sea-

floor off Anvil Point, Swanage (Miles et al., 1993; Selley, 2012; APT UK Ltd, 2013). The gases are 

thought to be oil-associated, as they were generated at a maturity equivalent to approximately 1.0% 

Ro, and have a similar source to other hydrocarbons in the area (APT UK Ltd., 2013). 

The Mupe Bay seep is of particular significance as it has been cited as evidence for an Early 

Cretaceous onset of petroleum generation and migration within the Wessex area (Cornford et al., 

1988; Kinghorn et al., 1994; Wimbledon et al., 1996; Emmerton et al., 2013), although this view has 

been challenged (Miles et al., 1993; Miles et al. 1994; Bigge & Farrimond, 1998; Parfitt & Farrimond, 

1998). The seep occurs in a Wealden fluvial channel conglomeratic bed which contains darker oil-

cemented, poorly consolidated sandstone clasts in a matrix of sand permeated by light oil, with oil 

continuing to seep into the sandstone at the present time (Lees & Cox, 1937; Selley, 1992; 

Emmerton et al., 2013). Hesselbo & Allen (1991) inferred a local source for the clasts, either through 
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collapse of a river bank or another surface degradation process. The seep oils have all been heavily 

biodegraded (Bigge & Farrimond, 1998; Parfitt & Farrimond, 1998). 

Cornford et al. (1988) proposed a two-phase staining model for the seep based on maturity 

differences between the oils in the clasts and matrix. In this model, oil generated in the Early 

Cretaceous seeped to the surface and stained and cemented alluvial channel sands. These were then 

eroded and re-deposited as oil-cemented clasts in a conglomeratic sandstone, with the matrix then 

stained by a subsequent migration of oil. This model is supported by sedimentological (Wimbledon 

et al., 1996) and palaeomagnetic studies (Emmerton et al., 2013). Others have suggested that the 

apparent difference in maturity can be explained by differential biodegradation between the clasts 

and matrix (Miles et al., 1993; Bigge & Farrimond, 1998), or that in fact there is no difference in 

maturity (Parfitt & Farrimond, 1998), although this does not preclude two phases of oil staining or 

Early Cretaceous generation and migration.   
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3 Database 
The assessment of the Jurassic shales of the Wessex area was carried out with the development of a 

3D model created from detailed seismic mapping integrated with all available hydrocarbon well 

data, relevant deep stratigraphic borehole information and outcrop geology. A total of 301 

hydrocarbon wells have been drilled in the study area, and numerous boreholes have been drilled 

for resources, commercial development or scientific studies (Figure 7). Boreholes are generally 

relatively shallow and lack downhole geophysical data that are commonly acquired with 

hydrocarbon wells. 

 

Out of the total 87 exploration and appraisal wells drilled in the study area, time-depth data was 

available on 47 of these wells (Figure 8) which were used to tie the seismic interpretation and build 

the velocity model for the depth conversion. A selection of these key wells are illustrated in six 

correlation panels (Appendix B), which extend into the Weald Basin study area (Figure 9). 

Geochemical data were available on a total of 14 wells, three boreholes and from eight outcrop 

localities (Figure 10). The boreholes at Swanworth Quarry and Metherhills, southern Dorset, were 

drilled as part of the Natural Environment Research Council’s Rapid Global Geological Events (RGGE) 

special topic ‘Anatomy of a Source Rock’, and cored the complete Kimmeridge Clay Formation 

(Morgans-Bell et al., 2001). There are numerous wells and boreholes in the ‘core mature area’ of the 

Lower Lias in southern Dorset and on the Isle of Wight, however many are too shallow or lack time-

depth data for use in this project. Geochemical data is limited to one well on the Isle of Wight 

Figure 7. Exploration, appraisal and development wells, and deep boreholes (> 100 m total 

depth) of the Wessex area. Background is hill-shaded topography. Contains Ordnance Survey 

data © Crown copyright and database right (2016). Contains British Geological Survey materials 

© NERC (2016). 
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Figure 8. Distribution of wells with time-depth data available for this study (blue). Also shown are 

the boreholes for which stratigraphical and geochemical data were available (pink). Background 

is hill-shaded topography. Contains Ordnance Survey data © Crown copyright and database right 

(2016). Contains British Geological Survey materials © NERC (2016). 

 

Figure 9. Location of the six well correlation panels shown in Appendix B, with the main BGS 

structural elements (British Geological Survey, 1996). Contains British Geological Survey 

materials © NERC (2016). 
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(Arreton 2) and towards the edge or outside of the Lower Lias core mature area in southern Dorset 

(Figure 10). 

Seismic interpretation of six key horizons – the Base Greensand Unconformity, Kimmeridge Clay, 

Corallian, Great Oolite, Lower Lias and Penarth – was completed on approximately 2734 miles  

(4400 km) of 2D seismic data of various vintages and quality, and a coarse grid from the 1998-

vintage Wytch Farm 3D covering an area of c. 35 miles2 (90 km2) (Figure 11), all obtained from the 

UK Onshore Geophysical Library (UKOGL). Examples of the 2D seismic data are shown in Figure 12. 

Generally data is of fair to good quality in areas with little structural deformation, but quickly 

deteriorates across major fault zones.  

The interpretation was tied to wells where surface picks, time-depth curves (and deviation surveys if 

necessary) were available and to the existing interpretation covering the Weald Basin, as well as 

being constrained by the outcrop geology (Figure 4). After gridding, the time interpretation was 

depth converted using a 3D velocity model which incorporated well time-depth data and faults to 

account for the major lateral changes in velocity in areas of complex structure. The resulting depth 

structure grids to the top of each prospective interval were then merged with the Weald Basin study 

grids, and are presented in Section 3. 

 

 

 

Figure 10. Location of wells, boreholes and outcrops for which geochemical data were available for 

this study. Also shown is the area within which the Lower Lias is believed to have reached sufficient 

maturity for oil generation (black polygon). Background is the outcrop geology from BGS 1:50,000 

scale DiGMapGB © NERC. Contains British Geological Survey materials © NERC (2016). 
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Figure 11. Location of 2D and Wytch Farm 3D seismic data used to map the subsurface in the 

study area. Lines A & B show the location of the data shown in Figure 12. All seismic data were 

obtained from the UK Onshore Geophysical Library (UKOGL http://ukogl.org.uk/). 

B 

A 

Figure 12. Comparison of seismic data quality from a tectonically quiet area (A – Line HB-

84-014) with a structurally complex area (B – Line BP78-02-233), demonstrating the 

reduction in data quality in highly faulted areas. Seismic lines provided by UKOGL. 

Corallian 

Penarth 

Penarth 

Corallian 

http://ukogl.org.uk/
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4 Structure and Tectonic History 
4.1 Structural Elements 

The Wessex study area is located entirely within the Wessex Basin (sensu Underhill & Stoneley, 

1998; Figure 13) and adjoins the Weald Basin study by Andrews (2014). The Wessex Basin is a system 

of extensional basins and intra-basinal highs, bounded by major east-west trending normal faults, 

developed during episodic pulses of Permian-Cretaceous extension (Penn et al., 1987; Selley & 

Stoneley, 1987; Chadwick, 1993; Underhill & Stoneley, 1998; Chadwick & Evans, 2005). The basin (as 

delineated by Underhill & Stoneley, 1998), consisting of four sub-basins, covers much of southern 

England (Figure 13) and extends offshore to the Central Channel High. The Wessex and Weald basins 

have a similar tectono-stratigraphic history and at times formed a single depositional basin (Scott & 

Colter, 1987), but today the boundary is constrained by a fundamental change in subsurface geology 

extending north-west from Southampton, under the Hampshire-Dieppe High (Underhill & Stoneley, 

1998; Newell, 2000). Locally the preserved Permian-Tertiary sediment thickness can be greater than 

c. 9840 ft (3000 m), although this thins to the west (Chadwick, 1986). 

 

 

 

Figure 13. The major Mesozoic structural features of southern England. Adapted from Andrews 
(2014), and based on Stoneley (1982); Chadwick (1983); Lake (1985); Sellwood et al. (1985); 
Hancock & Mithen (1987); Butler & Pullan (1990); Butler (1998); Hawkes et al. (1998); Underhill & 
Stoneley (1998); Chadwick & Evans (2005). The Wessex Basin sensu Underhill & Stoneley (1998) 
lies southwest of the orange dashed line. Study area outlines in pink (Wessex) and purple (Weald). 
Abbreviations: ARF = Abbotsbury-Ridgeway Fault; LCF = Litton-Cheney Fault; PF = Purbeck Fault; 
NF = Needles Faults; SF = Sandhills Fault; PdBF = Pays de Bray Fault; BRF = Bere Regis Fault; W-CF 
= Watchet-Cothelstone Fault; CF = Cranborne Fault; LSF = Lymington-Sandhills Fault; MF = Mere 
Fault; DHF = Dean Hill Fault; PMF = Portsdown-Middleton Fault; VoPF = Vale of Pewsey Faults; 
HBF = Hog’s Back Fault; GBF = Godley Bridge Fault; BBF = Brightling-Bolney Fault; DABF = 
Detention-Ashour-Bletchingley Fault; FZ = Fault Zone. 
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Structurally, the study area is dominated by three major east-west trending lines of inversion 

developed along the basin bounding faults: the Vale of Pewsey Faults, the Wardour-Portsdown Fault 

Zone and the Purbeck-Isle of Wight Disturbance (Figure 13; Chadwick & Evans, 2005). The 

predominant east-west trends of the basins and highs are offset by northwest-southeast trending 

faults (Ruffell & Wignall, 1990; Butler, 1998; Lake & Karner, 1987) which are visible on gravity data 

(Figure 14). The basin-bounding faults consist of several en-echelon fault segments (Underhill & 

Stoneley, 1998). 

The present-day structure is a result of the interplay between tectonic inheritance, the extensional 

graben system, and subsequent regional inversion (Chadwick & Evans, 2005). Extension and basin 

formation has been linked to the reactivation of Variscan faults (Figure 15; Chadwick, 1986; Penn et 

al., 1987; Selley & Stoneley, 1987; Taylor et al., 2001) which imparted the strong east-west (from 

thrusts) and northwest-southeast (from transfers) structural grains (Lake & Karner, 1987; Karner et 

al., 1987; Hawkes et al., 1998). 

4.2 Tectonic History 

Evidence suggests that the Wessex Basin (sensu Underhill & Stoneley, 1998) experienced several 

episodes of crustal extension, including in the Permian, the Early Triassic, the Early Jurassic and Late 

Jurassic-Early Cretaceous (Chadwick, 1986). Basin development initiated in the west, forming the 

Dorset Basin in the Permo-Triassic, and migrated to the east, forming the Weald Basin in the Early 

Jurassic (Lake & Karner, 1987). Differential subsidence led to the formation of a series of asymmetric 

grabens and half-grabens (Penn et al., 1987). Rifting in the Jurassic was accompanied by a 

widespread marine transgression (Taylor et al., 2001). Rapid subsidence during the Late Jurassic-

Early Cretaceous rifting phase resulted in the deposition of thick clastic sequences which led to 

sufficient burial for maturation of the Jurassic source rocks in the Weald and Channel basins (Lake & 

Karner, 1987; Hawkes et al., 1998; McMahon & Turner, 1998). 

Two main intervals of active faulting are determined from syn-depositional movement on the east-

west trending faults during the Early and Late Jurassic, correlating with the Central and North 

Atlantic rifting phases respectively (Jenkyns & Senior, 1991; Butler, 1998). The faults are 

predominantly downthrown to the south, and there are considerable thickness changes in these age 

sediments across the fault (Selley & Stoneley, 1987; Jenkyns & Senior, 1991; Chadwick & Evans, 

2005; Evans et al., 2011). The total pre-Tertiary displacement across the Purbeck-Isle of Wight fault 

system exceeded c. 6560 ft (2000 m) in places (Underhill & Stoneley, 1998). 

In the Early Cretaceous, the entire Wessex Basin experienced regional uplift, which was more 

pronounced in the west and south, imparting a strong easterly tilt (Lake & Karner, 1987; Butler, 

1998; Underhill & Stoneley, 1998). A widespread unconformity at the Aptian-Albian coincides with 

the onset of sea-floor spreading in the Bay of Biscay and the North Atlantic (Lake & Karner, 1987; 

Hawkes et al., 1998; McMahon & Turner, 1998). It is believed this Base Greensand Unconformity 

(also commonly referred to as the Late Cimmerian Unconformity) is a result of regional thermal 

uplift associated with the rifting and continental breakup (Hawkes et al., 1998) and is marked by a 

progressively westward truncation of older strata (Figures 16 & 17), with considerable thicknesses of 

sediments having been removed by erosion (Underhill & Stoneley, 1998). The mid-Cretaceous is  
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Figure 14. Bouguer gravity (mGal) (top), 50 km high-pass filtered Bouguer gravity (bottom), 

horizontal gradient of Bouguer gravity (next page, top) and tilt derivative (next page, bottom) of 

southern England. All images show the main BGS structural elements (British Geological Survey, 

1996) and Wessex (pink polygon) and Weald (purple polygon) study areas. Regional east-west and 

northwest-southeast trends are clearly visible. Gravity data from the BGS UKCS compilation, which is 

based on a compilation of BGS and open-file data. Contains British Geological Survey materials © 

NERC (2016). 

 

characterised by a change in tectonic style, from fault-related subsidence to regional flexural 

subsidence, which continued until the end of the Cretaceous (Chadwick, 1986; Penn et al., 1987), 

with the strata above the Base Greensand Unconformity generally unfaulted (Hamblin et al., 1992). 

Late Cretaceous subsidence was succeeded, towards the end of the Cretaceous or in the Early 

Tertiary, by a north-south compressive tectonic regime, fault reversal and basin inversion (Penn et 
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Figure 14 continued. 

Figure 15. Crustal section across the Wessex and Weald areas, illustrating the influence of 

extensional reactivation of Variscan thrusts, after Chadwick (1986). See Figure 13 for location. 
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al., 1987; Lake & Karner, 1987; Selley & Stoneley, 1987; Underhill & Stoneley, 1998; Smith & Hatton, 

1998). Reverse movements along reactivated faults created major northwards-verging monoclinal 

folds. The zones of most intense Tertiary inversion are generally coincident with regions of greatest 

Jurassic-Lower Cretaceous sedimentary thickness, although gentle inversions are also documented in 

the Dorset Basin (Butler, 1998). In addition, structural highs also became inverted to become 

Tertiary depocentres (Lake & Karner, 1987; Karner et al., 1987) and the Wessex Basin depocentre 

switched to the newly-formed Hampshire Basin at the location of the former Hampshire-Dieppe 

High (Underhill & Stoneley, 1998). The exact timing of Tertiary inversion is debated; according to 

Stoneley (1982), Chadwick (1986) and Evans et al. (2011), the inversion occurred in the Miocene, 

whereas Selley & Stoneley (1987), Bray et al. (1998), and Gale et al. (1999) have dated the inversion 

to the Eocene, whilst Lake & Karner (1987) believed Tertiary inversion to be intermittent throughout 

the Eocene to the Oligocene-Miocene. Uplift in the Early Miocene was associated with regional 

tilting (Lagarde et al., 2003). 

Figure 16. Generalised subcrop map beneath the Base Greensand Unconformity, determined 

from seismic and well data, and Whittaker (1985). Pink polygon outlines the Wessex study area. 

Figure 17. Schematic cross-section showing the progressively westward truncation of Jurassic 

(and older) strata beneath the Base Greensand Unconformity in the Wessex area, after 

Underhill & Stoneley (1998). 
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4.3 Background Seismicity of the Wessex Area 

Since 1970, BGS has recorded eleven earthquakes within the Wessex study area (Figure 18) with 

magnitudes ranging from 1.1 to 2.9 ML and focal depths of 2.6 to 12.7 km. Just over half of these 

earthquakes show conformance to major fault zones. Historical data (from 1700 to 1970, when BGS 

began instrumental monitoring of UK seismic events) suggest the study area lies in a relatively 

seismically quiet setting, with a maximum earthquake magnitude < 4 ML (Musson, 1996). The 

maximum horizontal compressive stress for southern England has a northwest-southeast orientation 

(Baptie, 2010). 

 

4.4 Depth Grids 

The depth grids to the top of each interval of interest (the Kimmeridge Clay, Oxford Clay, and Upper, 

Middle and Lower Lias), as interpreted in this study and for the Weald (Andrews, 2014) are 

presented in Figures 19-23. The Wessex area has an overall trend of deepening to the south-east; 

the Lias reaches its greatest depth (present-day) south of the Purbeck-Isle of Wight Disturbance on 

the Isle of Wight. None of the intervals are now as deep in the Wessex area as in the Weald 

depocentre; at its deepest point in the Wessex area, the top of the Lower Lias is over 200 ft 

shallower than the deepest point in the Weald (Figure 21). The westward extent of each horizon 

Figure 18. Earthquakes recorded by BGS from 1970 to 2016 for the Wessex area, coloured by 

magnitude. Also shown are the BGS structural elements (British Geological Survey, 1996) and 

the area in which the Lower Lias is predicted to be mature with a 1200 m below ground-level 

cut-off. Background is hill-shaded topography. Contains Ordnance Survey data © Crown 

copyright and database right (2016). Contains British Geological Survey materials © NERC 

(2016). Earthquake database available from BGS at 

http://earthquakes.bgs.ac.uk/earthquakes/dataSearch.html   

 

http://earthquakes.bgs.ac.uk/earthquakes/dataSearch.html
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decreases with younging age as the outcrop geology gets older to the west, due to overall tilting. 

Further to the outcrop geology limiting the extent of the Oxford Clay and Kimmeridge Clay, they also 

suffered heavy erosion at the Base Greensand Unconformity (Figures 16-17; 19-20); these 

formations may locally exist in small fault blocks but their regional extent is limited. 

 

Figure 19. Depth to Top Kimmeridge Clay Fm, as mapped by this study for the Wessex area and by 

Andrews (2014) for the Weald Basin. Contour interval = 500 ft. 

Figure 20. Depth to Top Oxford Clay Fm, as mapped by this study for the Wessex area and by 

Andrews (2014) for the Weald Basin. Contour interval  = 500 ft.
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Figure 21. Depth to Top Upper Lias, as mapped by this study for the Wessex area and by Andrews 

(2014) for the Weald Basin. Contour interval = 500 ft. 

Figure 22. Depth to Top Middle Lias, as mapped by this study for the Wessex area and by 

Andrews (2014) for the Weald Basin. Contour interval = 500 ft. 
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Figure 23. Depth to Top Lower Lias, as mapped by this study for the Wessex area and by Andrews 

(2014) for the Weald Basin. Contour interval = 500 ft. 
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5 Stratigraphy of the Jurassic in the Wessex 
Area 

The Permian-Tertiary sedimentary fill of the Wessex area lies unconformably on Variscan 

metamorphic basement (Colter & Havard, 1981). The Jurassic sedimentary succession (Figure 24), 

the focus of this study, consists of six shallowing-upwards depositional sequences (Hawkes et al., 

1998); the base of each sequence are shale and mudstones, which grade upwards into sandstones or 

shallow water carbonates in sediment-starved areas. Whilst erosion has removed much of the Upper 

Jurassic strata across the study area, all Jurassic formations are present in the Arreton 2 and 

Southard Quarry 1 wells. A brief summary of the stratigraphy of the Jurassic in the Wessex area 

follows; for a more detailed description the reader is referred to several BGS publications which 

cover parts of the study area, including for Dorset and SE Devon (Barton et al., 2011), the Wincanton 

district (Bristow et al., 1999), Shaftesbury (Bristow et al., 1995) and the Isle of Wight (Hopson & 

Farrant, 2015). 

 

Figure 24. Generalised stratigraphic column for the Jurassic of the Wessex area. J1-J6 are the 

Jurassic megasequences as defined by Hawkes et al. (1998). 
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5.1 Lower Lias 

The Lower Lias in the Wessex area is comprised of the Blue Lias Formation (a commonly limestone-

rich unit) and the Charmouth Mudstone Formation (a more clay-rich unit), consisting (in depositional 

order) of the Shales-with-Beef, Black Ven Marl, Belemnite Marl and Green Ammonite Beds 

members, deposited as a marine transgression established a mud-dominated shelf across the region 

(Hawkes et al., 1998; Barton et al., 2011). The Blue Lias Formation is characterised by cyclical 

interbeds of bioturbated, oxic limestone and anoxic, laminated shale (Ainsworth et al., 1998). The 

Shales-with-Beef consists of alternating shales and calcareous mudstones, thin beds of fibrous 

calcite, and minor concretion bands (Gallois, 2008). The Black Ven Marls are more shale dominated, 

containing only occasional limestone interbeds. Alternating beds of light grey, calcareous, 

carbonate-rich, silty mudstones and darker carbon-rich, less calcareous mudstones characterise the 

Belemnite Marls (Weedon & Jenkyns, 1990) whilst the Green Ammonite Beds comprise of a medium 

to dark grey mudstone which coarsens upwards (Barton et al., 2011).  

Structural control on sedimentation during the whole Lias interval is reflected in the laterally varying 

thicknesses of all formations. A major change in thickness occurs across the Purbeck-Isle of Wight 

Disturbance, with the interval becoming thicker to the south. The interval also thins considerably 

over the Cranborne-Fordingbridge High.  

A major difference between the Wessex area and Weald Basin is the organic content of the Lower 

Lias. The Lower Lias becomes more limestone-dominant towards the east into the Weald Basin, as 

evident in the well correlations (Appendix B), with significant differences between the log responses 

in wells of the two areas (Figure 24; Whittaker et al., 1985; Bessa & Hesselbo, 1997). 

5.2 Middle Lias 

The Middle Lias (Dyrham Formation) consists of the Eype Clay and the Down Cliff and Thorncombe 

Sand (or equivalents) members, deposited during a marine regression. The interval is capped by a 

highly condensed, ammonite-rich limestone, often called the Marlstone Rock Bed, Junction Bed or, 

as proposed by Cox et al. (1999), the Beacon Limestone Fm.  

The Eype Clay largely comprises micaceous mudstone with minor amounts of calcareous sandstone. 

Overlying this member are the Down Cliff Sand, followed by the Thorncombe Sand, which form a 

single unit inland from the Dorset coast (Barton et al., 2011). Towards the north of the study area, 

and to the south of the Purbeck-Isle of Wight Disturbance, the interval is variably shale or siltstone-

dominated, with only minor sands encountered.  

5.3 Upper Lias 

Renewed transgression was marked by the deposition of the Downcliff Clay, a sandy mudstone, with 

the shallow water depositional environment restricting the development of source potential. The 

formation grades up into silt and fine-grained sand of the Bridport Sands Member, one of the main 

reservoir intervals in the area. This highly bioturbated interval was deposited in a high energy lower-

middle shoreface environment (Holloway, 1986; Fleet et al., 1987) and shows marked thickness 

variation in the area, due to the persistent fault activity (Hampson et al., 2015).  
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In the study area, the Upper Lias is dominantly sand or silt-prone. On the Isle of Wight, the Upper 

Lias is expressed as a calcareous sandy siltstone to sandy argillaceous limestone (Hopson & Farrant, 

2015), whereas at Marchwood, it contains a thick sand section.  

5.4 Inferior Oolite 

During the Middle Jurassic, a carbonate platform developed in the eastern side of the Wessex area 

and across the Weald Basin – a consequence of a change in drainage pattern which removed the 

clastic source to the area (Hawkes et al., 1998). The Inferior Oolite within the study area is generally 

a condensed, shelly micritic limestone (Holloway, 1986), although with sharp lateral variations in 

thickness (Bristow et al., 1995). At the eastern edge of the Wessex Basin, the Inferior Oolite of the 

Weald Basin thins dramatically south-westwards from hundreds of metres to a few metres (Scott & 

Colter, 1987). The Inferior Oolite has a distinctive gamma-ray log response and was used as the 

datum for the correlation panels in Appendix B. 

5.5 Great Oolite Group 

The Great Oolite Group consists, in decreasing age, of the Fuller’s Earth, Frome Clay, Forest Marble 

and Cornbrash formations. This succession is dominated by mudstones with thin limestones 

Figure 25. Comparison of gamma ray and sonic logs for the Lias of the Wessex (Arreton 2) and 

Weald (Godley Bridge 1) study areas. 
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(Holloway, 1986).  The Fuller’s Earth and Frome Clay are predominantly deeper water mudstone 

facies (Barton et al., 2011). The gamma ray signatures for these are lower than for other Jurassic 

mudstones, reflecting a generally more uniform calcareous nature (Whittaker et al., 1985). These 

pass upwards into the Forest Marble Formation, comprised of shallow water sandstones, sandy 

mudstones & limestones, and thin limestones of the Cornbrash. The Great Oolite develops south-

west into the Wessex study area into a thicker, more argillaceous section compared to the Weald 

Basin (Scott & Colter, 1987). In the Wincanton district the Great Oolite Group is dominated by 

mudstones deposited in a low-energy environment. 

5.6 Oxford Clay and Kellaways 

The Kellaways Beds form a generally thin unit at the base of this section, and comprise mainly of 

siltstones, with lesser amount of mudstone and limestones, or interbedded calcareous fine-grained 

sandstone and mudstone on the Isle of Wight (Hopson & Farrant, 2015). It is overlain by the Oxford 

Clay, which consists of three members – the Peterborough, Stewartby and Weymouth Members. 

The Peterborough Member is a dark, fissile and fossiliferous shale (Kenig et al., 1994) deposited in a 

dysoxic environment during a period of renewed marine transgression and deepening of the water 

column (Hawkes et al., 1998). The Stewartby and Weymouth members are predominantly lean 

calcareous grey clays with minor siltstone (Penn et al., 1987; Kenig et al., 1994).  

5.7 Corallian 

The Corallian Beds are comprised of a cyclical pattern of shallow water sandstones, mudstones and 

limestones, laid down during a period of widespread uplift (Barton et al., 2011; Hopson & Farrant, 

2015). The sediments were deposited on a ramp-type margin on an intra-basinal high that dipped 

towards the southwest, but with thickness variations due to complex uplift and subsidence 

associated with active normal faulting (Newell, 2000). Log correlation within the Wessex area is 

complicated due to significant lateral and vertical lithology variations (Ahmadi, 1997). Differences in 

lithology between the Wessex and Weald areas is reflected in the log signatures, with the Corallian 

of the Weald generally more argillaceous (Whittaker et al., 1985). 

5.8 Kimmeridge Clay 

Extensive knowledge of the Kimmeridge Clay has been gained from many outcrop and borehole 

studies, in particular the boreholes at Swanworth Quarry and Metherhills in Dorset, which cored the 

complete formation. From these two boreholes, Morgans-Bell et al. (2001) identified four main 

mudrock lithologies of the Kimmeridge Clay:  medium-dark grey marl, medium-dark to dark grey-

greenish black shale, dark grey to olive-black laminated shale, and greyish-black to brownish-black 

mudstone; the formation also contains minor amounts of siltstone, limestone and dolostone. 

Rhythmic alternations in clay mineralogy and organic content occur throughout the succession 

(Herbin et al., 1995; Morgans-Bell et al., 2001; Taylor et al., 2001). 

The Kimmeridge Clay was largely deposited in an extensive, and periodically anoxic, epicontinental 

shelf sea, during a major marine transgression (Farrimond et al., 1984; Morgans-Bell et al., 2001; 

Taylor et al., 2001), with the sequence reflecting an overall shallowing upwards depositional 

sequence (Hawkes et al., 1998). The principal depocentres were the Weald and Channel basins, with 
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marked thinning on structural highs and towards the margins of the Wessex area, where the 

formation is commonly sandier, more calcareous and therefore leaner (Taylor et al., 2001). 

The mid-Kimmeridge Micrites (coccolith micrite beds) form the main reservoir for two recent hybrid-

play oil discoveries in the Weald Basin – Balcombe 2 (2013) and Horse Hill 1 (2014).  Although they 

have low primary porosity and permeability, oil has been produced from natural fractures. The 

micrites are thickest in the centre of the Weald Basin, but pinch out towards the basin margins and 

do not extend into the Wessex area, which is readily apparent in the log signature (Figure 25). 

Conversely, the Kimmeridge oil shale present in the Wessex area is absent in the Weald Basin.  

5.9 Portland and Purbeck Beds 

The presence of the Portland and Purbeck Beds, absent over much of the study area due to the 

regional uplift events, is limited to the south of the Purbeck-Isle of Wight Disturbance and in the 

north of the study area. The Portland Beds coarsen upwards from siltstones into fine-grained sands 

and then into shallow marine limestones, representing a progressive shallowing of the depositional 

environment. Of the Purbeck Group, only the basal strata, consisting of finely laminated limestones, 

are of Jurassic age (Barton et al., 2011). 

 

Figure 26. Comparison of gamma ray and sonic logs for the Kimmeridge Clay of the Wessex 

(Southard Quarry 1) and Weald (Balcombe 1) study areas. 
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6 Estimate of the Magnitude of Missing Section 
6.1 This Study 

Estimating the amount of missing section is fundamental for determining the maximum burial depth 

of the Jurassic shale intervals and assessing in which location(s) they may have reached maturity for 

oil generation. Both the magnitude and timing of uplift/erosion events in the Wessex area are 

debated (e.g. Law, 1998; England, 2010). The magnitude of uplift/erosion can be determined using 

different methodologies, most commonly by using palaeo-temperature profiles derived from Apatite 

Fission Track Analysis (AFTA) and Vitrinite Reflectance (Ro) (e.g. Bray et al., 1998), interval velocity 

analysis (Hillis, 1995; Law, 1998) and stratigraphic restoration. For this study, interval velocity 

comparisons and stratigraphic restoration have been carried out to estimate the amount of erosion 

across the Wessex area. 

Variations in sonic velocity between wells relative to a time-depth function based on an assumed 

normal compaction relationship for a given interval can be used to give regional estimates of uplift 

(Hillis, 1995; Law, 1998). Sedimentary rock porosity decreases, and therefore sonic velocity 

increases, with burial depth; this effect is largely irreversible with exhumation (Hillis, 1995; Hillis et 

al., 2008). Anomalously high interval velocities relative to the normal compaction relationship can 

then be interpreted to represent uplift of a formation. This methodology is extremely sensitive to 

errors in the normal compaction relationship and variations in sedimentary facies or diagenesis (Law, 

1998), therefore the Oxford Clay was used as the ‘type’ section which as a regionally consistent, 

thick shale section is less likely to have such errors.  

All available time-depth data for the Top Oxford Clay and Top Great Oolite Group were collated and 

used to calculate interval velocities for the Oxford Clay, which were then plotted against the 

corresponding mid-point of the section in true vertical depth sub-sea level (Figure 27). The normal 

compaction relationship is derived by finding the best-fit linear function passing through the data 

points with the lower interval velocity for a given burial depth (Law, 1998). A comparison of the 

interval velocity versus depth data points from the Wessex and Weald studies and the normal 

compaction trend used for the Weald study (Figure 27) shows the compaction trend to hold for the 

Wessex area. This trend was then used to give an estimate of the amount of erosion at each well 

location using the following equation (Hillis, 1995; Law, 1998): 

𝐸𝑎 =  
1

𝑚
(𝑉𝑖 − 𝑉0) − 𝑧𝑖 

Where m = the gradient of the normal compaction line, V0 is the surface intercept of the normal 

compaction relationship, Vi = interval velocity of the interval under consideration and zi is the mid-

point depth of the interval.  

As discussed in a previous section, the Wessex area has experienced (at least) two major phases of 

uplift and erosion, during the Aptian-Albian and the Mid-Tertiary, with overall regional tilting to the 

east. To gain an estimate of the magnitude of missing section, well data, structural history and 

palaeogeographies were considered in order to independently determine the amount of erosion. 

The uplift events have removed evidence for the original depositional thickness of the Upper Jurassic  
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to Tertiary successions in some areas, however knowledge of the palaeogeography and the   

interplay of eustatic changes and tectonics can help to determine their original depositional extent.  

The Kimmeridge Clay was deposited during a period of high global sea-level and active crustal 

extension, so it is probable that deposition was thick and widespread, with most of southern England 

being submerged (Chadwick, 1985a; Hamblin et al., 1992). Deposition during the latest Jurassic to 

early Cretaceous times was more localised due to a major fall in global sea-level coupled with post-

rift isostatic restoration (Chadwick, 1985b), with sedimentation within the study area restricted to 

the Channel Basin, south of the Purbeck-Isle of Wight Disturbance (Hamblin et al., 1992). Two major 

transgressive phases occurred in the Mid-Cretaceous, establishing sedimentation over a widespread 

area once again, with the deposition of marine sediments of the Lower Greensand, Gault and Upper 

Greensand formations (Chadwick, 1985c); these formations thin towards the western and northern 

margins of the Wessex area. The Chalk, laid down in the Late Cretaceous, was deposited over most 

of southern Britain (Chadwick, 1985d). In the Wessex area, although rates of tectonically-driven 

subsidence are thought to have been very slow, a thick Chalk section was deposited due to 

accommodation created by compaction under loading of the thick, pre-Chalk Mesozoic sequence 

(Chadwick, 1985d). Thick Lower and Middle Tertiary sediments were deposited in the south and east 

of England prior to major structural inversion (Chadwick, 1985e). 

The interval velocity analysis method gives an estimate of the total erosion at a given location, but to 

account for the structural complexity of the region, two restored isopachs were created – one from 

the Top Oxford Clay to the Base Greensand Unconformity, and one from the Base Greensand  

Figure 27. Interval velocities vs TVD for determination of the normal compaction trend (NCT) for 

the Oxford Clay of the Wessex and Weald areas, used to estimate the amount of erosion. 
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Unconformity to the Mid-Tertiary. These restored isopachs were then summed to the topography to 

give a pseudo Top Oxford Clay depth grid, which was then subtracted from the present-day Top 

Oxford Clay depth grid to give an estimate of the overall missing section (Figure 28). Estimated 

erosion from the interval velocity analysis is also plotted for comparison. This study predicts a 

maximum missing section thickness of approximately 5250 ft (1600 m), with the greatest estimates 

south of the Purbeck-Isle of Wight Disturbance where the Tertiary uplift event dominates. 

6.2 Published Studies 

Both palaeo-temperature and interval velocity studies of the Wessex area have predicted maximum 

erosion on the km-scale (Law, 1998; Bray et al., 1998). The interval velocity analysis method used by 

Law (1998) gives comparable estimates of erosion to those determined from AFTA/Ro data in 

inverted areas, but significantly lower results in more tectonically stable areas. Law (1998) estimated 

a maximum missing section thickness of 1640 ft (500 m) for the Wytch Farm area, whereas AFTA/Ro 

data suggest c. 3280-6560 ft (1000-2000 m) uplift has occurred in this region (Bray et al., 1998). 

Similar values were determined by Stoneley (1982) and Ebukanson & Kinghorn (1986a) who 

estimated c. 1640-3940 ft (500-1200 m) of Early Cretaceous uplift in the Wytch Farm and Bushey 

Farm areas. On the Isle of Wight, Gale et al. (1999) determined a minimum uplift of 1640 ft (500 m) 

on the northern limb of the Sandown Pericline from the stratigraphical distribution of reworked 

material. A total of 4844 ft (1476 m) of missing section, from the Aptian to the base of the Miocene, 

at Arreton 2 was estimated to have been removed during Miocene tectonic inversion (Ebukanson & 

Kinghorn, 1986a). Across the Wessex Basin (sensu Underhill & Stoneley, 1998) as a whole, Bray et al. 

(1998) estimated up to a maximum c. 7545 ft (2300 m) of Early Cretaceous uplift, and Jones et al. 

(2002) determined a maximum denudation of between c. 4920-6560 ft (1500-2000 m). Offshore in 

Figure 28. Total erosion for the Wessex area estimated in this study from interval velocity 

analysis and stratigraphic restoration. Plotted values are those estimated using the NCT 

(determined in Figure 27) for individual wells. 
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the very southern extension of the Wessex Basin on the Central Channel High, Beeley & Norton 

(1998) estimated post-Cretaceous uplift of up to c. 4920 ft (1500 m). 

There is a degree of uncertainty in the amount of missing section across the Wessex study area (as 

evident in the varied amounts predicted by published studies), complicated by the presence of the 

significant unconformities.  Whilst there is a general agreement that erosion is greatest over major 

structures (Chadwick, 1986a; Lake & Karner, 1987; Hillis et al., 2008), estimates of the magnitude are 

varied, depending on the methodology and assumptions used for the calculation. This may be 

further compounded by the differing (and often interchangeable) terminology, as is common in 

studies of uplift/exhumation (Doré et al., 2002), meaning values are not necessarily directly 

comparable. Nevertheless, the consensus in published studies is for km-scale erosion, certainly 

south of the Purbeck-Isle of Wight Disturbance, with which this study is in agreement.  

AFTA is used to determine the timing and magnitude of peak palaeo-temperatures. The predicted 

uplift is controlled by the value used for the geothermal gradient at the time of uplift  

(Blundell, 2002). The higher palaeo-temperatures inferred from the AFTA/Ro data may instead be 

due to a phase of crustal heating rather than a result of deeper burial (Bray et al., 1998). 

Alternatively, as the AFTA/Ro data show that none of the studied wells are at their maximum burial 

depth present-day, the reference wells used in the interval velocity study to determine the normal 

compaction curve may themselves have been uplifted (Bray et al., 1998). The Ro data should be used 

with caution as the data often form a wide scatter at a given depth or are anomalously low due to 

vitrinite suppression in organic-rich material (see Section 7.2). 
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7 Geochemistry 
Hydrocarbon discoveries, shows and seeps within the Wessex area demonstrate the presence of a 

mature oil-prone source rock in (or in the vicinity of) the study area, with the Mupe Bay palaeo-seep 

cited as evidence that petroleum generation had begun by the Early Cretaceous (Selley, 1992; 

Emmerton et al., 2013). The source potential of the Jurassic in the Wessex area has long been 

recognised; oil shales of the Kimmeridge Clay were commercially exploited at Kimmeridge (Dorset) 

for fuel and raw materials in the 18th and 19th centuries (Gallois, 1978). However, despite this, and 

the long history of exploration, the available geochemical data in the public domain for the Wessex 

area is sparse. Figure 10 shows the location of wells, boreholes and outcrops with geochemical data 

used in this study, collated from well reports, published papers and academic work. 

There are three main intervals with good source rock potential in the Wessex area: the Lower Lias, 

the Oxford Clay and the Kimmeridge Clay formations (e.g. Ebukanson & Kinghorn, 1985; Ebukanson 

& Kinghorn, 1990; England, 2010). These intervals all have variations in lithology, sedimentation rate, 

organic content and kerogen type (Ebukanson & Kinghorn, 1985). The richest source rock intervals 

are characterised by laminated dark shales, consistent with increased preservation of organic matter 

in an anoxic environment (Ebukanson & Kinghorn, 1990; Morgans-Bell et al., 2001). In addition, the 

Upper Lias and Middle Lias also have well-developed clay sections, and are included in the 

evaluation for consistency with the Weald study; the limited geochemical data available for these 

intervals suggest they have fair source potential at best. Additionally, good source intervals are 

occasionally present in the Frome Clay and Fuller’s Earth (Great Oolite Group), and within limestones 

of the Corallian and Inferior Oolite. Geochemical studies suggest the oils in the producing fields of 

the Wessex area are all sourced from the Lower Lias, from the source rock kitchen to the south of 

the Purbeck-Isle of Wight Disturbance (Underhill & Stoneley, 1998; Scotchman, 2001; England, 

2010). 

Source rock quality has been determined from Rock Eval analysis, including measurements of total 

organic carbon (TOC), hydrogen index (HI), S1 (free hydrocarbons) and S2 (bound hydrocarbons). 

Unfortunately, no oxygen index (OI) data was available for this study. It is commonly accepted that a 

rock requires a minimum TOC of 1.5-2% when immature to expel oil during maturation (Lewan, 

1987). However, a high TOC alone does not imply a good source rock (Peters & Cassa, 1994), so 

other Rock Eval parameters need to be considered to determine the source potential of a rock. S2 

values > 5-10 mgHC/gRock indicate good source rocks, whilst those > 50 mgHC/gRock represent 

world class potential (Smith et al., 2014). HI is the ratio of S2/TOC and gives an indication of kerogen 

type, whether oil or gas-prone. S1 is a measurement of the amount of hydrocarbons already 

generated and present in the source rock, and of the free oil component that can potentially be 

extracted after fracture stimulation. 

7.1 Source Rock Potential  

7.1.1 Kimmeridge Clay Formation 

The Kimmeridge Clay Formation contains extremely organic-rich intervals although the section is 

largely immature across the Wessex area (Colter & Havard, 1981; Ebukanson & Kinghorn, 1985; Penn 

et al., 1987; Cornford et al., 1988; Figures 29; 30). The highest TOC of 35.09% was recorded in the  
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Swanworth Quarry 1 borehole, but high TOCs (>10%) are recorded throughout the section, in 

approximately 6% of the samples, in both the Swanworth Quarry 1 and Metherhills 1 boreholes 

(Tyson, 2004). These boreholes were drilled specifically to target the organic content variability 

within the Kimmeridge Clay, and identified five main organic-rich intervals, thought to be linked to 

maximum flooding surfaces (Morgans-Bell et al., 2001). Tyson (2004) found the mean TOC within the 

Swanworth Quarry and Metherhills boreholes to be negatively correlated with sedimentation rate, 

indicating that dilution is a significant controlling variable. High TOCs of 16.34% and 16.37% have 

also been measured from outcrops at the Ringstead Bay area and the Chapman’s Poole area 

respectively (Ebukanson & Kinghorn, 1985; Ebukanson & Kinghorn, 1990) and Farrimond et al. 

(1984) reported TOC of up to 57.2% in an oil shale from an outcrop sample east of Kimmeridge Bay 

(Dorset). Good quality intervals (TOC > 2%) are also present in the Arreton 2, Marchwood 1 and 

Cranborne 1 wells. 

 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Fr
eq

u
e

n
cy

TOC (%)

Figure 29. TOC and S1 vs frequency plots for the Kimmeridge Clay in the Wessex area. Out of a 

total of 2813 data points, 150 have TOC values > 10%. The high S1 (>= 5 mgHC/gRock) are from 

samples taken from oil shales at outcrop. Data from Farrimond et al. (1984); Ebukanson & 

Kinghorn (1985); Morgans-Bell et al. (2001); and well reports. 



THE JURASSIC SHALES OF THE WESSEX AREA: GEOLOGY AND SHALE OIL AND SHALE GAS RESOURCE ESTIMATION 

37 
© OGA 2016 

 

S1 data are only available from outcrop samples (Farrimond et al., 1984) and are generally  

≤ 1.5 mgHC/gRock (Figure 29), as expected for an immature source rock; the highest value, of  

28.0  mgHC/gRock was measured in an oil shale. HI data are only available from outcrop samples 

(Farrimond et al., 1984) and at a limited number of depths in the Marchwood 1 well, but the values 

are generally ≥ 500 mgHC/gTOC indicating a dominantly oil-prone source. The Kimmeridge Clay 

kerogen type ranges from type I to type III (Williams, 1986; Tyson, 2004). 

This study predicts the Kimmeridge Clay to have reached maturity (Ro > 0.6%) at its maximum burial 

only in isolated segments on the Isle of Wight, even without the top-down truncation of c. 3950 ft 

(1200 m) applied (Figure 30). It has a maximum gross thickness of potentially mature source of c. 

450 ft (140 m) and an average gross thickness of 170 ft (52 m). A detailed petrophysical study of 

available log and core data was not undertaken for this study, so the distribution of the net thickness 

of organic-rich shale could not be confidently mapped (for any interval). However, on average across 

the core mature area, the Kimmeridge Clay has an estimated net to gross of 0.9, with the proportion 

of organic-rich shale estimated at 0.35 (P50 value).  

The limited maturity data from vitrinite reflectance, spore colouration and thermal alteration index 

indicates the Kimmeridge Clay is immature across the Wessex area (Ebukanson & Kinghorn, 1985; 

Cornford et al., 1988). However, Ebukanson & Kinghorn (1986a) suggested that the Kimmeridge Clay 

in the Arreton 2 well is just entering the early oil maturity window, based on spore colour and basin 

modelling which predicted a vitrinite reflectance of approximately 0.6% at the base of the 

Kimmeridge Clay at maximum burial.  This view was supported by Williams (1986), who modelled 

the base of the Kimmeridge Clay on the Isle of Wight as entering the oil window in the Late 

Cretaceous. An alternative model using Lopatin Time Temperature Index calculations by Penn et al. 

Figure 30. Gross thickness of the Kimmeridge Clay Formation within the area it has been 

predicted to have reached oil maturity, and below a present-day burial depth of c. 3950 ft (1200 

m). No part of the predicted mature section is presently at depths of c. 5000 ft (1500 m) or 

greater below the surface. The P50 estimate for the proportion of organic-rich shale is 0.35. 

Shaded region is the area of mature Kimmeridge Clay with no top-down truncation applied. 
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(1987) suggests that the Kimmeridge Clay has only reached maturity in the northernmost part of the 

Channel Basin. Higher maturity of the Kimmeridge Clay is observed in outcrop samples from the 

southern side of the Purbeck-Isle of Wight Disturbance compared to those from the northern side of 

that structure (Ebukanson & Kinghorn, 1986a). 

7.1.2 Oxford Clay Formation 

The lower Oxford Clay (Peterborough Member) is demonstrated to have good source potential 

across the Wessex area (England, 2010), although it is largely immature across the study area 

(Figures 31, 32). The highest TOC of 12.36% is measured from an outcrop at Chickerell, but TOCs  

> 5% are also measured in intervals within the Encombe 1, Lulworth Bank 1, Southard Quarry 1, 

Arreton 2, Marchwood 1, Cranborne 1, Coombe Keynes 1 and Spetisbury 1 wells. S1 data are only 

available for the Spetisbury 1 and Coombe Keynes 1 wells, with all values < 1 mgHC/gRock (Figure 

31). S2 data support the presence of intervals with excellent source potential within the Oxford  
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Figure 31. TOC and S1 vs frequency plots for the Oxford Clay Formation in the Wessex area. Data 

are from Ebukanson & Kinghorn (1985); England (2010); and well reports. 
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Clay, with a maximum value of 57.85 mgHC/gRock measured in the Spetisbury 1 well; Encombe 1, 

Arreton 2, Southard Quarry 1 and Lulworth Bank 1 also have several intervals of good source 

potential.  

A maximum HI of 800 mgHC/gTOC is measured in the Southard Quarry 1 well, but values ≥ 200 are 

common, indicating an oil-prone marine type II kerogen source in the organic-rich Peterborough 

Member (Ebukanson & Kinghorn, 1985). The higher HI values in the Southard Quarry 1 well probably 

reflect greater levels of preservation and/or increased marine input in this part of the basin 

(England, 2010). Only the Peterborough Member, the lowest interval of the Oxford Clay, has organic-

rich shales whereas the overlying Stewartby and Weymouth members are composed of relatively 

lean calcareous mudstones (England, 2010). There is a clearly defined trend of kerogen type from 

type II at the base through mixed type II/III, type III to type IV at the top of the formation (Ebukanson 

& Kinghorn, 1985). Variation in bottom-water oxygen availability is thought to be the main control 

on the level of preservation of organic matter (Ebukanson & Kinghorn, 1985; Kenig et al., 2004). 

Vitrinite reflectance data generally show low values for the Oxford Clay and Tmax values range from 

415-440°C in the available data set. The Oxford Clay is not thought to have reached sufficient 

maturity onshore for the expulsion of hydrocarbons, although within the Portland-Wight Basin 

depocentre the formation may have reached early oil maturity at maximum burial (Ebukanson & 

Kinghorn, 1986b; Penn et al., 1987; England, 2010). Results from this study are in agreement with 

this conclusion, with a maximum gross thickness of c. 700 ft (213 m) and a mean gross thickness of c. 

Figure 32. Gross thickness of the Oxford Clay Formation within the area it has been predicted 

to have reached oil maturity, and below a present-day burial depth of c. 3950 ft (1200 m). Only 

a very minor volume of the predicted mature section is below a present-day burial depth of c. 

5000 ft (1500 m) (contour not shown). The P50 estimate for the proportion of organic-rich 

shale is 0.28. Shaded region is the area of mature Oxford Clay with no top-down truncation 

applied. 
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395 ft (120 m) of mature Oxford Clay section predicted on the Isle of Wight (Figure 32), with an 

estimated net organic rich shale of 28% (P50 value).  

Additional potential may exist at Kimmeridge Bay and the surrounding areas. England (2010) 

suggested that the Oxford Clay in Encombe 1 and Southard Quarry 1 may be close to the onset of oil 

generation, on the basis of the C29 steranes and estimated vitrinite reflectance values; this is 

supported by 1D basin modelling at Kimmeridge 5 (Figure 33; England, 2010; Fraser & Aryanto, in 

prep) and Southard Quarry 1 (England, 2010), which places the Oxford Clay in the early maturity 

window for oil generation. Although the model presented in this study does not predict any mature 

Oxford Clay section at these locations, such a result is certainly possible within the bounds of 

uncertainty governing the determination of the maximum burial depth. 

 

7.1.3 Upper Lias 

The Upper Lias (Toarcian) is proven to be the main source rock interval in the contiguous Paris Basin 

(Burwood et al., 1991). However the Wessex area was characterised by a high energy, shallow water 

depositional environment during this time resulting in the formation of the Bridport Sands (Fleet et 

al., 1987), thus limiting the development of potential source rocks, as evident in the generally low 

TOC and S1 values (Figure 34). TOC values for the Upper Lias range from 0.23-4.79% with values 

Figure 33. 1D basin model for Kimmeridge 5 indicating that the Oxford Clay has reached early 

maturity for oil generation at this location (from Fraser & Aryanto, in prep).  
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> 2% only present in the Spetisbury 1 well. S2 values range from 0.1-28.9 mgHC/gRock, with values  

> 5 mgHC/gRock (indicating good source potential) measured in Martinstown 1 and Spetisbury 1. HI 

data are limited, but the values corresponding to a fair TOC (> 1%) range from 247-456 mgHC/gTOC 

indicating a type II to II/III kerogen source.  

The interval, in this study, is predicted to have reached maturity onshore only on the Isle of Wight 

and around Kimmeridge Bay (Figure 35), with the top-down truncation of c. 3950 ft (1200 m) not 

impacting the mature area. The mature section has a maximum gross thickness of 778 ft (237 m) and 

a mean gross thickness of 228 ft (69 m). The net percentage of prospective shale is estimated to be 

3% (P50 value). Vitrinite reflectance data indicate a range of maturity from immature at Spetisbury 1 

(Ro = 0.42%), to marginal maturity at Marchwood 1 (Ro = 0.47-0.54%, to late oil window/wet gas 

window at Arreton 2 (Ro = 0.7-1.23%). However, the values in Arreton 2 don’t have a trend showing 

an overall increase with depth – instead the highest values are in the upper part of the Upper Lias. 

Tmax values range from 428-439°C. 
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Figure 34. TOC and S1 vs frequency plots for the Upper Lias in the Wessex area. Data are from 

Ferguson (2002); England (2010); and well reports.  
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7.1.4 Middle Lias 

In the study area, TOCs for the Middle Lias are all less than 2% with the exception of one (limestone) 

interval in the Martinstown 1 well which has a TOC of 3%, although several wells do have intervals 

with TOC > 1% (Figure 36). Spetisbury 1 and Martinstown 1 both have intervals with S2 > 5 

mgHC/gRock, with Martinstown 1 having a maximum S2 of 11 mgHC/gRock. For samples with a fair 

TOC, HI ranges from 144-367 mgHC/gTOC indicating types II – II/III – III kerogen.  

The interval is predicted to have reached maturity onshore in the southern part of the study area, on 

the Isle of Wight and in Dorset, south of the Purbeck-Isle of Wight Disturbance (Figure 37). The 

mature section has a maximum gross thickness of 1300 ft (396 m) and a mean gross thickness of 197 

ft (60 m). The percentage of prospective shale (in the Eype Clay) across the whole interval is 

estimated at 5% (P50 value), as the gross interval is dominated by the Thorncombe Sands. Tmax data 

range from 423-440°C and measured vitrinite reflectance values range from 0.35-0.92%, with values 

> 0.7% present in both the Spetisbury 1 and Arreton 2 wells.  

7.1.5 Lower Lias 

The Lower Lias is the primary source within the Wessex study area, with the quality generally 

deteriorating towards the east into the Weald Basin (Table 2; Burwood et al., 1991; Andrews, 2014), 

where the interval becomes dominated by limestones. Although it has excellent potential in the 

Wessex area (Figure 38), there are significant variations in the source rock richness both 

geographically and temporally (England, 2010). Deposition of the Lower Lias occurred in an anoxic 

environment with high productivity (Scotchman, 2001).  

Figure 35. Gross thickness of the Upper Lias within the area it has been predicted to have reached 

oil maturity, and below a present-day burial depth of c. 3950 ft (1200 m). Dashed line is the extent 

of the predicted mature area below a present-day burial depth of c. 5000 ft (1500 m).  
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In the available data set, TOCs for the Lower Lias range from 0.05-7.43%. The highest values are 

measured from outcrop samples at Lyme Regis and Charmouth, but intervals with TOC > 5% are also 

found in the Spetisbury 1, West Compton 1, Chickerell 1 and Down Barn Farm 1 wells. The highest 

TOCs are found in the Shales-with-Beef and Blue Lias intervals although good TOCs are seen in all the 

laminated shale intervals in the Lower Lias. Interbedded calcareous mudstones and limestone have, 

at best, moderate potential (Fleet et al., 1987). The average TOC for the whole of the Lower Lias 

within the Wessex area is 2.3%, considerably higher than the average for the Weald Basin of 1.1% 

(Figure 38), where the Lower Lias contains a higher proportion of limestone (Andrews, 2014). 

Weedon & Jenkyns (1990) reported TOC values over 5% in dark beds of the Belemnite Marls. 

Similarly, Kiriakoulakis et al. (2000) determined TOCs of 5.7-6.7% in the Shales-with-Beef. For the 

Blue Lias Formation, Deconinck et al. (2003) reported TOCs ranging from 0.25-12.2% with an average 

of 4%.  
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Figure 36. TOC and S1 vs frequency plots for the Middle Lias (including the Eype Clay) in the 

Wessex area. Data are from Ferguson (2002); El-Mahdi (2004); England (2010); and well reports. 
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Study S2 mg/g TOC % HI mg/g 

Lower Lias (Burwood et al., 1991, average southern England) 6.0 1.8 325 

Lower Lias (Burwood et al., 1991, maximum southern England) 38.0 6.0 630 

Blue Lias (Akande 2012, Lyme Regis, Dorset) 46.3 8.1 569 

Lower Lias (Ferguson 2002, maximum Chickerell 1, Dorset) 27.5 5.7 480 

Lower Lias (Ferguson 2002 average Chickerell 1, Dorset) 9.0 2.7 334 

Lower Lias (El-Mahdi 2004, maximum Down Barn Farm 1, Dorset) 21.5 5.2 413 

Lower Lias (El-Mahdi 2004, average Down Barn Farm 1, Dorset) 10.2 2.81 347 

Lower Lias (Eltera 2004, maximum Kimmeridge 5, Dorset) 3.0 4.05 215 

Lower Lias (Eltera 2004, average Kimmeridge 5, Dorset) 1.8 1.73 114 

Lower Lias (England 2010 maximum Wessex Basin) 38.7 7.43 571 

Lower Lias (England 2010 average Wessex Basin) 5.56 2.20 249 

Lower Lias (average for all Weald wells, 2014 study) 1.7 0.9 196 

Lower Lias (maximum for all Weald wells, 2014 study) 15.5 2.0 773 

 

Figure 37. Gross thickness of the Middle Lias within the area it has been predicted to have 

reached oil maturity, and below a present-day burial depth of c. 3950 ft (1200 m). Dashed line is 

the extent of the predicted mature area below a present-day burial depth of c. 5000 ft (1500 m). 

Removing the top-down truncation does not alter the predicted mature area or gross rock 

volume significantly. 

Table 2. Comparison of geochemical data (S2, TOC and HI) for the Lower Lias of the Wessex area 

and Weald Basin (updated from Andrews, 2014). 
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Figure 38. (Top) TOC vs frequency from the Lower Lias in the Weald Basin (from Andrews, 2014). 

Red = legacy data; blue = BGS data (see Appendix B of the Weald report); green = pyrolysis-

derived TOCs, courtesy of Celtique Energie. TOC (middle) and S1 (bottom) vs frequency plots for 

the Lower Lias in the Wessex area. Data are from Ebukanson & Kinghorn (1990); Kiriakoulakis et 

al. (2000); Scotchman (2001); Ferguson (2002); Najm (2003) – data courtesy of P. Farrimond; El-

Mahdi (2004); Eltera (2004); England (2010); Farrimond (unpublished); and well reports. 
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S2 ranges from 0.5-38.7 mgHC/gRock, with the highest value measured in a sample from an outcrop 

at Lyme Regis. Deconinck et al. (2003) published HI values ranging from 55-728 mgHC/gTOC. There 

are several wells with high S2, TOC and HI values, supporting the presence of good to excellent oil-

prone source rocks in the Lower Lias. The Lower Lias contains a mixture of type II, II/III, and III 

kerogens that show no clear trend with stratigraphy (Deconinck et al., 2003; England, 2010), 

although the type II/III and III kerogens are generally present towards the margins of the area, whilst 

the basin depocentre is largely type II (Scotchman, 2001). 

The Lower Lias ‘core mature area’ has the greatest areal extent of the five intervals considered in 

this study (Figure 39). The mature section has a maximum gross thickness of 2288 ft (697 m) and a 

mean gross thickness of 431 ft (131 m). The net prospective shale is estimated to be 35% (P50 

value). The main mature area is south of the Purbeck-Isle of Wight Disturbance, although a small 

area close to the Spetisbury 1 well in the Winterborne Kingston Trough is also predicted in this 

study. The results of this study are, however, in general agreement with published models of Lower 

Lias maturity in the Wessex area. Penn et al. (1987) determined, from Lopatin Time Temperature 

calculations, that the deeper basin contained mature to over-mature Lias. This is supported by 

vitrinite reflectance data which reach values of Ro > 1.0% south of the Purbeck-Isle of Wight 

Disturbance (Ebukanson & Kinghorn, 1986b; England, 2010). Further, both Ebukanson & Kinghorn 

(1986a) and Holloway (1986) suggested that the base of the Lias section has reached early maturity 

in the Winterborne Kingston Trough. 

Basin modelling suggests the onset of hydrocarbon expulsion from the Lower Lias occurred around 

150 Ma (England, 2010), consistent with observations from the Mupe Bay palaeoseep (Selley, 1992), 

Figure 39. Gross thickness of the Lower Lias within the area it has been predicted to have reached 

oil maturity, and below a present-day burial depth of c. 3950 ft (1200 m). Dashed line is the 

extent of the predicted mature area below a present-day burial depth of c. 5000 ft (1500 m). 

Removing the top-down truncation does not alter the predicted mature area or gross rock volume 

significantly. 
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with peak generation in the Mid to Late Cretaceous (Ebukanson & Kinghorn, 1986a; Penn et al., 

1987; Underhill & Stoneley, 1998). In the Jurassic depocentre south of the Purbeck-Isle of Wight 

Disturbance, the Lower Lias attained its maximum burial depth prior to the Miocene tectonic 

inversion (Ebukanson & Kinghorn, 1986b; Bray et al., 1998), whilst north of the fault system, 

maximum burial occurred in the Early Cretaceous, prior to Aptian-Albian uplift (Ebukanson & 

Kinghorn, 1986a; Bray et al., 1998). Source rock maturation ceased in these respective areas 

coincident with the major uplift (Underhill & Stoneley, 1998). 

7.2 Data Quality 

Due to the lack of cored shales, often the geochemical analyses has been completed on cuttings 

which limits sample quality due to caving and mixing of lithologies. In addition, the age of some of 

the wells means there may have been a small reduction of TOC through oxidation and of S1 by 

evaporative loss over time. There is also a risk of contamination in the samples from the West 

Compton 1, Portland 1 and Down Barn 1 wells as they were drilled with oil-based mud. 

The measures of maturity – vitrinite reflectance and Tmax data – used in this study both potentially 

have a high degree of uncertainty. For a single sample depth with multiple data points, a wide range 

of vitrinite reflectance values are often reported. For example, in the Cranborne 1 well at a depth of 

1719 ft (524 m) MD in the Kimmeridge Clay Formation, the vitrinite reflectance values range from 

0.38-1.1% with an average of 0.74%; this is an over-estimate of the maturity at this location. Figure 

40 shows all of the vitrinite reflectance data points in the Wessex area available to this study, 

plotted against present-day burial depth. Vitrinite enhancement (or suppression) is indicated by a 

wide spread of data points at a given burial depth. Enhancement (as per the Cranborne 1 example) is 

likely due to a large amount of reworked vitrinite within the samples. Suppression, on the other 

hand, occurs in the presence of large amounts of amorphous organic matter, or in the presence of 

significant caved particles (Peters & Cassa, 1994). England (2010) suggests that the vitrinite 

reflectance values in the Peterborough Member of the Oxford Clay are suppressed. 

Tmax data are less reliable when TOC is low or when S2 < 0.5 mgHC/gRock, or in cases of severe 

recycling of organic material (Smith et al., 2014). England (2010) documented the suppression of Tmax 

within the more organic-rich sediments of the Lower Lias. An estimated vitrinite reflectance can be 

derived from Tmax data, using a relationship derived originally by Jarvie et al. (2001) for the Barnett 

Shale. A plot of measured versus calculated vitrinite reflectance (Figure 41) shows considerable 

scatter around the early maturity values, although there is a more defined trend at higher 

maturities. The calculated vitrinite reflectance is plotted alongside cleaned measured vitrinite 

reflectance data (Figure 40), with the Tmax data largely predicting higher maturity for a given burial 

depth than the measured data. Butler & Pullan (1990) determined that vitrinite reflectance data in 

the Weald Basin gave low estimates of the maturity, and it is possible that this trend continues into 

the Wessex area.   
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Figure 40. (Left) All vitrinite reflectance data points in the Wessex area available to this study, 

plotted against burial depth. (Right) Measured vitrinite reflectance (averaged where multiple 

values exist for a single depth within a well) in blue and vitrinite reflectance calculated from 

Tmax in orange, plotted against burial depth. 
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Figure 41. Vitrinite reflectance derived from Tmax versus measured vitrinite reflectance data 

for the Wessex area. 



THE JURASSIC SHALES OF THE WESSEX AREA: GEOLOGY AND SHALE OIL AND SHALE GAS RESOURCE ESTIMATION 

49 
© OGA 2016 

 

7.3 Source of Conventional Discoveries 

The oils discovered in the Wessex area are all thought to have the same source, as compositional 

variations can largely be attributed to maturity, migration and/or biodegradation effects (England, 

2010). The carbon isotope ratios of the oils at Wytch Farm and Kimmeridge range from -28.5 to  

-29.8‰, so the source rock is interpreted to have been deposited in a restricted marine environment 

(Colter & Havard, 1981; Ebukanson & Kinghorn, 1986b). Oil APIs range from 35° at Wytch Farm to 

45° at Kimmeridge (Ebukanson & Kinghorn, 1986b; Gluyas  et al., 2003). The lighter gravity of the 

Kimmeridge oil is thought to be either because it was expelled from more mature source rocks or 

because some fractionation occurred during migration (Evans et al., 1998). A full range of n-alkanes 

in the C15-C30 oils are present in the oils at Wytch Farm and Kimmeridge, indicating the oils have 

not experienced significant thermal alteration or biodegradation (Ebukanson & Kinghorn, 1986b), 

although minor biodegradation is observed in samples from fields to the west of these (England, 

2010). 

There is a good correlation between the oils and Lower Lias source rock in the Chickerell 1 well, 

although the source rock is immature at the well location (Forbes, 1987). The oils in the Wessex area 

have been determined to be sourced from the Lower Lias on the southern side of the Purbeck-Isle of 

Wight Disturbance, based on maturity, the n-alkane distribution, alkane ratios, stable carbon 

isotopes and hydrogen isotope ratios (Ebukanson & Kinghorn, 1986b). The Lower Lias sediments 

around Wytch Farm did not reach sufficient maturity, even at maximum burial, for hydrocarbon 

generation (Bray et al., 1998), but the early history of movement on the Purbeck-Isle of Wight 

Disturbance preserved a full Jurassic section on the southern side of the fault system which, along 

with the Cretaceous Wealden and Lower Greensand formations, buried the Lias sediments in this 

region deep enough to reach maturity (Colter & Havard, 1981; Scott & Colter, 1987). Penn et al. 

(1987) estimated that in the Cretaceous, the Lias within the Channel Basin was approximately 3300 

ft (1000 m) deeper than the Sherwood Sandstone Formation at Wytch Farm. 

There has been some debate in the literature regarding the difference between the estimated trap 

volume and produced volume at the Kimmeridge Oilfield (see section 2.3.1). Fraser & Aryanto (in 

prep) have proposed that the Kimmeridge reservoir (the Cornbrash Fm, Great Oolite Group), which 

is underpressured, is being actively recharged from the Oxford Clay source rock directly above it 

through downward migration. 1D basin modelling at Kimmeridge 5 (England, 2010; Fraser & 

Aryanto, in prep) places the Oxford Clay in the early oil mature window. Although it may not have 

reached sufficient maturity onshore for hydrocarbon expulsion to occur (England, 2010), the 

maturity of the Oxford Clay is expected to increase offshore into the Channel Basin depocentre. An 

oil-source rock correlation for the Wessex area concluded, based on the biomarker data, that the 

Oxford Clay is not a source of the hydrocarbons in the area (England, 2010). However, England 

(2010) did observe compositional differences in DST oil samples from Kimmeridge 1 and Wytch 

Farm, but attributed the composition at Kimmeridge to be a consequence of the mixing of a low 

maturity biodegraded oil with a subsequent condensate charge. Biomarker analyses of more recent 

oil samples may help to assess the contribution of an Oxford Clay source to the Kimmeridge Oilfield. 
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8 Estimation of Oil-in-Place 
The methodologies used to assess in-place and recoverable resources in shale gas basins are 

summarised in Andrews (2013) and for shale oil in Andrews (2014). In the absence of production 

data, a ‘bottom-up’ approach is used in this study, consistent with the Weald study.  For the 

calculation on the in-place shale oil resource, an estimation of the in-situ free oil content of each 

shale unit is required.  

S1, a measurement of the amount of free hydrocarbons already generated in the source rock (and 

the free oil component that can potentially be extracted after fracture stimulation), can be 

determined through Rock-Eval analysis. This measurement can then be up-scaled to calculate oil-in-

place for a given formation (Downey et al., 2011). It is reasonable to model two end members: 1) 

assuming the measured S1 is bound within kerogen if the oil saturation index is less than 100 or 2) 

assuming the sorbed oil is restricted to S2 and that all the S1 is free oil.  

As with the Weald Basin, the paucity of data available for the Wessex study area precludes a full 

understanding of free oil contents. Ideally S1 values should be obtained from whole core at a 

sampling density of one per foot (Downey et al., 2011). However, most data available for this study 

is from analysis performed on cuttings. Future analysis may be improved by a new pyrolysis program 

which separates the S1 peak into two sub-peaks based on the thermal properties and chemical 

composition (Romero-Sarmiento et al., 2015; Romero-Sarmiento et al., 2016), but will continue to be 

limited by the lack of cored shale intervals available for the Wessex area. 

The oil saturation index (OSI) is a measure of the free oil from Rock-Eval measured S1 in relation to 

TOC: 

OSI = (S1*100)/TOC 

When the OSI exceeds the sorption potential of oil in kerogen, potentially producible oil is likely to 

be present in the pore space. Experimentation suggests that the sorption potential for oil in kerogen 

is approximately 100 mg oil/g kerogen so OSI values above 100 are taken to indicate the presence of 

potentially producible oil (Jarvie & Baker, 1984; Sandvik et al., 1992; Jarvie 2012). The minimum case 

for the Monte Carlo simulation of oil-in-place volumes is where the free oil component of S1 is zero 

(i.e. the oil is bound within the kerogen and not likely to be producible). 

The correction of S1 for ‘evaporative loss’ is an important factor in converting the present-day S1 

figures into data that are likely to pertain to the shales under reservoir conditions at depth. The loss 

of light oil (up to C10) from samples between down-hole collection and its analysis (often decades 

later) is often estimated to be 35% (a correction factor of 1.33), but is highly dependent on organic 

richness, lithofacies, oil type, sample type, storage conditions and method of preservation (Jarvie, 

2012; Jarvie, 2014; Jiang et al., 2016); correction factors over 5.0 may be necessary (Jarvie et al., 

2012). Additionally, Michael et al. (2013) demonstrated that oil gravity has a major control on 

evaporative loss. Studies have indicated that evaporative loss of light hydrocarbons from cuttings 

could happen very quickly (matter of days) after sample preparation (Jarvie & Baker, 1984; Jiang et 

al., 2016). Jarvie (2014) states that old cuttings yield, at best, the minimum S1 oil values; this is an 

important consideration for this study given the age of many of the wells. 



THE JURASSIC SHALES OF THE WESSEX AREA: GEOLOGY AND SHALE OIL AND SHALE GAS RESOURCE ESTIMATION 

51 
© OGA 2016 

 

The Wessex area data indicate the presence of producible oil, with a large number of samples having 

an OSI > 100 mgHC/gTOC, particularly within the Lower Lias (Figure 42a). The average OSI for the 

organic-rich (TOC > 2%) shales of the Jurassic in the Wessex area is 65 mHC/gTOC. The Oxford Clay, 

Upper Lias and Middle Lias all have OSI < 100 mgHC/gTOC (even after correcting for evaporative 

loss), suggesting the free oil component in these formations is negligible. This is in agreement with 

the predicted immaturity of these formations surrounding the well locations for which S1 data is 
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Figure 42. a) S1 vs TOC for the Wessex area. Blue = Lower Lias, grey = all other data. b) S1 

corrected for evaporative loss vs TOC for the Lower Lias in the Wessex area (not including data 

from West Compton 1 – see text for discussion). c) Corrected S1 vs TOC for all Jurassic shales in 

the Weald Basin, from Andrews (2014). 
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available (for these intervals). A maximum OSI of 378 mgHC/gTOC is found in one sample of an oil 

shale from outcrop in the Kimmeridge Clay, but is not reflective of its maturity.  

The Lower Lias has a maximum of 279 mgHC/gTOC found in one sample from the Blue Lias interval, 

although all shale intervals in the Lower Lias have samples with OSI > 100 mgHC/gTOC in the 

Portland 1 stratigraphic test, and the Down Barn 1 and West Compton 1 hydrocarbon wells. 

However, the validity of this data is questionable, particularly for the West Compton 1 well which is 

located north of the Purbeck-Isle of Wight Disturbance, and away from the ‘core mature area’ for 

the Lower Lias. The immaturity of the Lower Lias interval at West Compton 1 is supported by the lack 

of hydrocarbon shows within the well, with only traces of methane and ethane gas reported. 

Anomalously high S1 values may be due to the presence of migrated oil or contamination by drilling 

mud (Peters & Cassa, 1994). All three wells were drilled with oil-based mud so this may, at least in 

part, explain the anomalous S1 measurements. Jiang et al. (2016) found that invasion of drilling mud 

within shale cores from the Duvernay and Nordegg formations of the Western Canada Sedimentary 

Basin may account for over 20% of the S1 peak in some samples. However, Portland 1 and Down 

Barn 1 are both located in the area where it is thought the Lower Lias has reached maturity for oil 

generation so elevated S1 peaks would be anticipated. 

The corrected S1 versus TOC for the Lower Lias (not including data from West Compton) is shown in 

Figure 42b. For the Weald, even when the S1 values are corrected with an evaporative factor of 2.42 

(the P10 case used in Appendix A), the average oil saturation index is well below the ‘producible oil’ 

value, even in extremely organic-rich shales (Figure 42c; Andrews, 2014); the correlation between 

TOC and S1 suggests that most of the ‘free oil’ is bound within the kerogen. The average present-day 

S1 values within the ‘core mature area’ of the Wessex area for organic-rich shales (TOC > 2%) were 

used as the P50 input in the Monte-Carlo simulation (Table 3).  

 

Source rock unit Average 
present-day S1 
in all samples in 
study area 
(mgHC/gRock) 

Average present-
day S1 in organic-
rich shales in the 
‘core mature area’ 
(mgHC/gRock) 

Estimated 
average 
original S1 
(mgHC/gRock) 

Average oil 
yield using 
Jarvie et al 
(2007) 
bbl/acre-ft 

Average oil 
yield using 
Michael et al 
(2013) 
bbl/acre-ft 

Kimmeridge Clay 2.36 2.93 5.86 128.3 151.4 

Oxford Clay 0.35 0.13* 0.26 5.7 6.7 

Upper Lias 0.25 0.2* 0.40 8.8 10.3 

Middle Lias 0.72 0.79* 1.58 34.6 40.8 

Lower Lias 1.55 1.87 3.74 81.9 96.6 

Kimmeridge Clay 1.40 1.21 2.42 53.0 62.6 

Oxford Clay 1.10 1.16 2.32 50.8 60.0 

Upper Lias 1.00 1.07 2.14 46.8 55.4 

Middle Lias 0.90 0.88 1.76 38.5 45.5 

Lower Lias 1.00 0.28 0.56 12.3 14.5 

 

Table 3. S1 values used for the Monte Carlo simulation (top = this study, bottom = Weald study 

(Andrews, 2014)). *denotes average values taken from all data, due to limited data for samples 

with TOC > 2%. 
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The gross mature rock volumes for the units of interest were determined using depth cut-offs 

equivalent to oil maturity of Ro = 0.6% and Ro = 1.1%, after Charpentier & Cook (2011). Type II and III 

kerogens (present in the Wessex area) may start generating oil at values of Ro > 0.5% (Tissot & 

Welte, 1978), but a higher cut-off of Ro = 0.6% is used in this study for consistency with previous 

shale oil-in-place evaluations (Andrews, 2014; Monaghan, 2014) and gives a reasonable match to the 

data, when corrected for maximum burial (Figure 43). The equivalent depths for Ro = 0.6% are 7000-

8000 ft (2130-2440 m) and for Ro = 1.1% are 12000-13000 ft (3660-3990 m). These depth-maturity 

surfaces are a regional simplification and as such do not fully account for the complex variation 

particularly in areas which are highly faulted; 3D basin modelling incorporating the full burial and 

erosion history would be needed to resolve maturity on a more local scale. 

The gross rock volumes were then upwards truncated at two alternative levels below the surface  – 

firstly at a depth of c. 3950 ft (1200 m), which is the minimum burial depth below protected areas 

defined in the Infrastructure Act 2015, and secondly at a depth of c. 5000 ft (1500 m) as proposed by 

Charpentier & Cook (2011). Net mature shale volumes were then determined from the estimated 

percentage of shale with TOC > 2% within the interval (or with TOC > 1% for the Upper and Middle 

Lias due to lack of data). 
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Figure 43. Measured vitrinite reflectance (blue crosses) and vitrinite reflectance derived from Tmax 

(orange crosses) for the Wessex area, plotted against maximum burial depth. The two trend lines 

were derived from maturity data in the Weald Basin (Andrews, 2014), but show a good fit to the 

maturity data from the Wessex area. Trend A (red line) has Ro = 0.6% at 7000 ft (2130 m) and 

trend B (green line) has Ro = 0.6% at 8000 ft (2440 m). 
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OGA (formerly DECC) have not previously estimated the shale oil-in-place volumes for the Wessex 

area, and no unconventional drilling has taken place. There are no published estimates of shale oil-

in-place resource for the Wessex area. The U.S. EIA evaluated the technically recoverable shale 

resource for the Lias of the Wessex and Weald study areas collectively in 2013, reporting an unrisked 

oil-in-place volume of 54 billion bbl (USEIA, 2013). England (2010) estimated up to 913 million m3 of 

oil and 242 billion m3 of gas have been expelled from the Lower Lias in the Portland-Wight sub basin 

kitchen (including offshore) from a volumetric calculation from basin modelling. The methodology 

applied in this study tends to underestimate oil-in-place volumes compared with using a basin 

modelling approach (Al Fraser, personal communication). 

The results of the two maturity scenarios, including the cut-offs described above, are presented in 

Table 4. This study estimates that the total oil-in-place resource for the Jurassic shales in the Wessex 

study area is 0.2-1.1-2.8 billion bbl (32-149-378 million tonnes) (P90-P50-P10). A range of values is 

presented based on a Monte Carlo analysis to give a measure of uncertainty in the resource 

estimation (Figure 44). Significant volumes of shale gas are not thought to be present within the 

Jurassic shales of the study area. Even when combined with the oil-in-place volumes determined for 

the Weald, which had a P10 value of 8.6 billion bbl for all shale intervals (Andrews, 2014), the 

volume predicted from this study is considerably smaller than that predicted by the U.S. EIA. At least 

some of the discrepancy is due to the difference in methodology used for the volumetric 

determination and differences in input parameters. 

 

 

 

 

 

 

 Total oil in-place estimates (billion bbl) Total oil in-place estimates (million tonnes) 

With top of oil 
window at 7000 ft 

(2130 m) maximum 
burial depth 

With top of oil 
window at 8000 ft 

(2440 m) maximum 
burial depth 

With top of oil 
window at 7000 ft 

(2130 m) maximum 
burial depth 

With top of oil 
window at 8000 ft 

(2440 m) maximum 
burial depth 

Kimmeridge Clay 0.00 – 0.01 – 0.04 0.00 – 0.00 – 0.00 0.24 – 1.50 – 4.77 0.00 – 0.00 – 0.00 

Oxford Clay 0.00 – 0.01 – 0.03 0.00 – 0.00 – 0.00 0.20 – 1.17 – 3.52 0.01 – 0.06 – 0.19 

Upper Lias 0.00 – 0.00 – 0.01 0.00 – 0.00 – 0.00 0.12 – 0.39 – 1.00 0.03 – 0.09 – 0.20 

Middle Lias 0.01 – 0.03 – 0.08 0.00 – 0.01 – 0.02 1.31 – 4.38 – 11.53 0.38 – 1.21 – 2.93 

Lower Lias 0.52 – 1.34 – 2.70 0.22 – 0.55 – 1.08 71.5 – 182.8 – 368.4 30.0 – 75.2 – 147.3 

All Jurassic clay 
units 

0.2 – 1.1 – 2.8 32 – 149 - 378 

Table 4. Estimates of the total potential in-place shale oil resource for the Jurassic in the Wessex 

study area. P90, P50 and P10 values are given for each unit, where P10 is the most optimistic 

scenario. This estimate only covers unconventional oil, and excludes volumes in potential tight 

conventional or hybrid plays. 
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Figure 44. Probabilistic distribution and cumulative probability curve representing the result of a 

Monte Carlo analysis for the in-place resource estimation of shale oil for all Jurassic shale 

intervals, with a maturity cut-off of 2130 m. 
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9 Synthesis and Conclusions 
This study presents a preliminary estimate of oil-in-place resources for the Jurassic shales of the 

Wessex area, determined following the methodology present in Andrews (2014). Estimated oil-in-

place volumes for the five intervals considered in this study range from 0.2 – 1.1 – 2.8 billion bbl  

(32 – 149 – 378 million tonnes) (P90 – P50 – P10). Volumes associated with tight conventional and 

hybrid plays are not included in the calculation. No significant shale gas resource is recognised with 

the study area. 

The Lower Lias appears to be the only interval with shale oil potential, albeit with relatively small 

volumes in a localised area largely south of the Purbeck-Isle of Wight Disturbance, where a full 

Jurassic section is preserved (Figure 45, 46, 47). Major erosion at the Base Greensand Unconformity 

 

 

Figure 45. (Top) Core mature areas for the Jurassic shale intervals of the Weald and 

Wessex areas. (Bottom) Zoom-in of Wessex area. Location of the seismic sections in 

Figure 46 (red lines) and the well correlation panel in Figure 47 (black line) also shown.  
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Figure 46. Interpretation of three north-south seismic lines with horizons mapped in 

this study. (A) Line AUK-94-AJ053 & B92-54, (B) UKOGL-RG-004, (C) BP-353 1 & BP-353 

2. Dashed black line is approximately 1200 m (c. 3950 ft) below surface. Seismic data 

provided by UKOGL. Location of lines shown in Figure 45. 
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Figure 47. Correlation of the Lower Lias section demonstrating the significant increase in thickness of this interval south of the Purbeck-Isle of Wight 

Disturbance. Location of wells shown in Figure 45.  
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(to the north of the Purbeck Isle of Wight Disturbance) and in the Tertiary has limited the present-

day extent and maximum burial depth of the Oxford Clay and Kimmeridge Clay (Figure 48). Within 

the study area, oils from the four oil fields (including Wytch Farm, the largest onshore oil field in 

Europe) and from shows and seeps have all been correlated to a Lower Lias source, with the kitchen 

to the south of the Purbeck-Isle of Wight Disturbance, demonstrating the presence of a mature oil-

prone source within this interval. 

Much of the area considered potentially prospective is already licensed for exploration, or has been 

offered for award following the 14th onshore bid round (Figure 49). The oil-in-place volume is limited 

in part due to the requirement of a minimum depth of 1200 m below surface for hydraulic fracturing 

in protected areas, which cover a large part of the ‘core mature area’ (Figure 50). The interpreted 

seismic sections (Figure 46) and cross-sections (Figure 48) show how this cut-off intersects the five 

shale intervals evaluated in this study. The predicted oil-in-place volumes without this restriction 

would not increase substantially to north of the Purbeck-Isle of Wight Disturbance (due to 

insufficient maximum burial depth to attain oil maturity ), but may impact the volumes to the south. 

Estimates of recoverable shale oil volumes are not calculated as there have been no production tests 

for the Jurassic shales of the Wessex area to provide the required data. 

 

 

 

 

 
  

Figure 48 (Next page). Generalised cross-section through the Wessex and Weald study areas 

showing the relationship between the present-day depth of the shale intervals with the oil window 

and top-down truncation. 
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Figure 49. Core mature areas with a 1200 m (c. 3950 ft) below ground level cut-off applied for 

each shale interval evaluated in this study. Contains Ordnance Survey data © Crown copyright 

and database right (2016). 

Figure 50. Core mature areas with a 1200 m (c. 3950 ft) below ground level cut-off applied for 

each shale interval evaluated in this study with protected areas as defined in the Infrastructure 

Act 2015. Background is hill-shaded topography.  
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10 Glossary 
 

Unit/abbreviation Full name 

API standard (American Petroleum Institute) measure of natural gamma radiation 
typically in a borehole, or of oil gravity 

bbl barrel (of oil) 

bcf billion (10
9
) cubic feet 

ft foot/feet  

ft³ or scf (standard) cubic foot/feet  

GIIP gas initially in place 

HI hydrogen index = [ S2*100]/TOC. It is a measure of the ratio of H to C. 

HIo original hydrogen index 

HIpd present-day hydrogen index 

km kilometre(s) 

km
2
 square kilometre(s) 

m metre(s) (1 m = 3.28084 ft) 

m³ cubic metre(s) (1 m³ = 35.31467 ft³) 

Ma million years before present 

mile²m a volume occupying an area of 1 square mile with a thickness of 1 metre  
(1 mile²m = 2,589,988 m³) 

mmbo million (10
6
) barrels of oil 

mmcf million (10
6
) cubic feet of gas  

OI oxygen index = [ S3*100]/TOC. It is a measure of the ratio of O to C. 

OIIP oil initially in place 

Ro vitrinite reflectance (in oil) (%) 

S1 the amount of hydrocarbons volatalised during the first stage of Rock-Eval 
pyrolysis (in milligrams of hydrocarbon per gram of rock, mgHC/gRock) 

S2 the amount of hydrocarbons generated through thermal cracking of non-volatile 
organic matter during Rock-Eval pyrolysis (mgHC/gRock) 

ss sub-sea level 

STOIIP stock-tank oil initially in place (at surface temperature and pressure) 

tcf trillion (10
12

) cubic feet 

tcm trillion (10
12

) cubic metres 

Tmax the temperature (°C) at which the maximum release of hydrocarbons from 
cracking of kerogen occurs during Rock-Eval pyrolysis (top of S2 peak). It is a 
measure of maturity. 

TOC total weight percent of organic carbon (% or wt%) 

δ
13

C an isotopic signature; a measure of the ratio of carbon stable isotopes 
13

C : 
12

C 
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