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Foreword 
This report is the published product of a study by the British Geological Survey (BGS) and the 
University of Bristol that was commissioned by the Oil and Gas Authority (OGA) to research the 
feasibility of statistically forecasting the microseismicity observed during and after unconventional 
shale gas exploration in 2018 by Cuadrilla Resources at its Preston New Road site near Blackpool, 
UK.  
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Plain Language Summary 
The present authors were commissioned by the Oil and Gas Authority (OGA) to research the 
feasibility of statistically forecasting the microseismicity observed during and after unconventional 
shale gas exploration in 2018 by Cuadrilla Resources at its Preston New Road site near Blackpool, 
UK. The scope of the research was limited by the available time and resources, and we focussed 
on the following: (i) a statistical analysis of the microseismicity catalogues recorded by the surface 
and downhole network of seismometers, including an analysis of the observed magnitude 
distribution and level of recording completeness, (ii) the calibration of a widely used temporal 
statistical model of tectonic seismicity to the present data, (iii) the generation and evaluation of 
probabilistic forecasts of the variable event rate and magnitude distribution as simulated by the 
model, (iv) an assessment of the geological and physical processes that are not (yet) captured by 
the statistical model. Our findings can be summarised as follows. 
The microseismic datasets collected at the well PNR-1z present globally unique opportunities to 
understand and model subsurface processes in response to hydraulic fracturing, including induced 
seismicity. The insights are likely to contribute to improved operations and risk mitigation 
strategies. The two magnitude scales used by the surface and the downhole networks present a 
challenge because they are difficult to reconcile. This implies that the standard extrapolation of 
seismicity rates observed at small magnitudes to the rates and chances of larger magnitudes, 
including those that might be felt or cause damage, is more uncertain than in the case of tectonic 
seismicity. We observe a b-value of the Gutenberg-Richter frequency magnitude distribution of 
about 1.5, which appears to be robustly larger than b-values of tectonic seismicity, notwithstanding 
issues with the magnitude scales. We estimate that the downhole catalogue is approximately 
complete down to a moment magnitude of -1. We adopted a precautionary maximum magnitude 
of 6.5 on the basis of the most likely tectonic maximum magnitude according to the most recent 
national seismic hazard map. A more context-specific assessment of maximum magnitude is 
difficult and was beyond the scope of this project.  
The calibration of the statistical seismicity model highlighted similarities and differences between 
tectonic and induced seismicity. Several model parameters were similar to those found in tectonic 
applications, but some were substantially different. Similarities include clear evidence for 
temporal clustering of seismicity and the applicability of the Gutenberg-Richter distribution, as 
well as aspects of the seismic source parameters themselves. Differences include that the 
parameters suggest that the magnitude of an event has little effect on the number of subsequently 
triggered events, in clear contrast to the magnitude-dependent aftershock generation of tectonic 
earthquakes. In addition, we observed a more rapid decay of temporal clustering than is customary 
for tectonic sequences, which may indicate a more dominant role of fluids in the clustering 
characteristics of the microseismicity. We caution that we examined a relatively narrow range of 
magnitudes above the completeness magnitude of -1, and further work is needed to understand the 
robustness of these conclusions, ideally on an independent dataset.  
The performance of the forecasts generated by the statistical model highlighted some successes 
and some discrepancies. In broad terms, the forecasts performed well during periods with moderate 
seismic response to hydraulic fracturing as well as in between stages and during the prolonged halt 
of operations in November 2018 during which the seismicity decayed slowly. On the other hand, 
the model frequently underpredicted the most seismically intense periods. Whether the current 
forecasts are good enough to be useful depends on the particular usage as well as other available 
predictive tools, and would require discussions with potential users.  
We interpret the mixed performance of the forecasts as a result of features in the induced seismicity 
that are rare in natural seismicity. Specifically, events induced during fracturing do not appear to 
show the type of magnitude-dependent triggering and clustering observed in natural seismicity. 
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Instead, we observe during these times a high rate of apparently unclustered seismicity. This 
feature is not currently built into the model.  
In our view, the present findings warrant further research, ideally on independent but comparable 
datasets. The issue of the irreconciled magnitude scales requires solutions. The present forecasting 
model should be tested on an independent, out-of-sample dataset to better mimic real-time 
situations. The 2019 dataset from PNR-2 would be ideal for this purpose. The apparent lack of 
magnitude-dependent clustering in the induced microseismicity needs verification with more data, 
e.g. below the magnitude threshold of -1.5 Mw that we analysed and on other datasets. Next, the 
model can be modified to accommodate the strong but unclustered seismicity during stages by 
linking it to injection data. Finally, the physical process of seismic slip nucleation in response to 
pore pressure changes can be combined with and incorporated in the present statistical model. We 
believe this further research would contribute to improved probabilistic predictive tools and 
seismic risk mitigation tools.  

Extended Plain Language Synopsis 
Cuadrilla carried out hydraulic fracturing of the well PNR-1z between August and December 2018 
for the purpose of shale gas exploration. Surface and borehole monitoring networks operated by 
the British Geological Survey (BGS) and Cuadrilla together detected over 38,000 microseismic 
events during this period, including the largest event of local magnitude 1.6 ML. Seven events 
equal to or greater than magnitude 0.5 ML occurred, exceeding the UK regulatory threshold that 
requires operators to halt and pause operations.  
The collected datasets present globally unique opportunities to understand and model 
microseismicity induced by hydraulic fracturing operations. The surface arrays detected around 
170 events with magnitudes given in the local magnitude scale, while the more sensitive downhole 
array recorded over 38,000 events with magnitudes given in a moment magnitude scale. 
Seismologists use different magnitude scales depending on the type of network sensors, noise 
levels and properties of the events. The UK’s regulatory framework uses local magnitudes.  
The use of two different magnitude scales complicated the analysis of the magnitude distribution 
as well as the subsequent modelling. A consistent dataset is required for analysis and modelling. 
Existing conversion relationships between moment and local magnitude do not match the observed 
data well. When applied, they introduce artefacts in the magnitude dataset. The process of fitting 
the observed magnitudes with the common Gutenberg-Richter distribution, as well as 
extrapolating the observed rates at low magnitudes to rates at higher magnitudes, is therefore 
subject to greater uncertainty than usual. We recommend further work to solve this issue and to 
quantify the added uncertainty in extrapolations.  
Tectonic (natural) seismicity is widely observed to obey the Gutenberg-Richter law, which states 
that the frequency of events decreases by a constant factor for each unit increase in magnitude. 
This factor is nearly universally reported to be about 10 (corresponding to the seismological b-
value of one). For example, magnitude 5 events are 10 times less frequent than magnitude 4 events, 
and so on, over the entire range of observed tectonic earthquakes.  
The PNR-1z dataset obeys the Gutenberg-Richter law, too, suggesting that the eventual 
magnitudes of the induced events were controlled by similar processes as those of natural events. 
Interestingly, and as reported previously elsewhere, the factor by which the frequency of larger 
magnitudes decreases is greater: instead of a factor of 10, the frequency decreased by a factor of 
about 32 per unit magnitude. It is conceivable, but unlikely, that this difference is an artefact of 
the different magnitude scales. This is important because the factor is nearly always used to 
extrapolate to the chances of larger hypothetical seismic events such as those that might be felt or 
cause damage. A high factor would decrease the chance of larger events relative to natural 
seismicity.  
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Our approach to forecasting recognises that deterministic predictions of individual seismic events 
are not currently possible, neither for tectonic earthquakes nor for induced events. Instead, 
statistical forecasts aim to construct a distribution of the number of events with associated chances 
of occurring over a time period and magnitude range of interest. In general, good forecasts provide 
a narrow range that matches the observations well. Poor forecasts provide either very broad ranges 
and are uninformative, or they provide narrow ranges that do not match the data. Whether or not 
forecasts are good enough to be useful depends on the particular use of the forecasts. For example, 
even relatively uninformative forecasts may still be useful for taking low-cost actions, such as 
simply providing information, e.g. to the operators, regulators and the public, about a particular 
risk view of future seismic hazards. More informative and reliable forecasts may warrant more 
costly mitigation actions, such as changing or halting operations.  
To forecast the PNR-1z microseismicity, we used a statistical model originally developed for 
tectonic seismicity. The Epidemic Type Aftershock Sequence (ETAS) model offers many 
advantages, including relative simplicity, flexible calibration, wide usage and a record of 
outperforming other models in a range of tectonic settings. Several non-UK government agencies 
employ the model as part of operational forecasting systems, including the US Geological Survey, 
the Italian National Institute of Geophysics and Volcanology (INGV) and New Zealand’s GNS 
Science. The ETAS model has also been used with some success in the context of induced 
seismicity in the central US, in China and elsewhere.  
The ETAS model describes seismicity as a result of two processes: spontaneous earthquakes 
generated by slow, steady, plate tectonic loading; and earthquakes triggered by previous 
earthquakes. The spontaneous earthquakes occur randomly in time according to a constant long-
term rate. Each spontaneous earthquake can trigger earthquakes according to relationships 
observed between earthquakes and their aftershocks: larger magnitudes on average generate 
exponentially more aftershocks; the aftershock frequency decays approximately inversely with 
time; every earthquake can trigger its own (secondary, tertiary, etc.) aftershocks; and, crucially, 
the magnitudes of all events obey the Gutenberg-Richter law and are random, i.e. they do not 
depend on the history, time, location or ancestor earthquake. That is, any earthquake has a (small) 
chance of being large.  
To assess the suitability of the ETAS model to induced microseismicity at PNR-1z, we calibrated 
the temporal ETAS model to the microseismic catalogue and then performed a retrospective 
forecasting experiment. The calibration consists of estimating the magnitude distribution and 
estimating five additional parameters of the ETAS model.  
Estimating the magnitude distribution means determining the b-value (the above-mentioned factor 
by which the frequency of magnitudes decrease with increasing magnitude) and a maximum 
magnitude above which seismic events are extremely unlikely to happen. The above-mentioned 
factor of 32 translates to a b-value of about 1.5. We chose a precautionary maximum magnitude 
of 6.5 taken from the UK’s national seismic hazard map because a more context-specific 
estimation of the maximum magnitude is challenging and beyond the scope of this project.  
The estimation of the other five ETAS parameters, together with an analysis of temporal patterns 
of the seismicity, highlighted some of the similarities and differences between natural and induced 
seismicity. We observed temporal clustering of events in both cases, which provides some 
justification for the decision to apply a model designed for tectonic seismicity to this case of 
induced seismicity. Here, we observed a faster decay of triggered seismicity than in natural 
seismicity, which might be interpreted as resulting from a more prominent role of fluids in the 
generation of seismicity. In addition, the parameters appear to indicate the surprising result that 
larger magnitudes do not trigger more events than small ones, in stark contrast to tectonic 
earthquake sequences. Finally, we observed that during some stages a strong and unclustered rate 
of seismicity appears directly influenced by pore pressure changes due to injection rather than 
being triggered by previous seismicity.  
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We caution that further work is needed to understand the robustness of these findings, including 
testing the effect of the small range of magnitudes over which the catalogue is complete and 
analysing the parameter uncertainties and trade-offs. On balance, the former might be important, 
while the latter is unlikely to change the findings.  
Despite the surprising parameter estimates, an analysis of the quality of the fit of the model to the 
data generally revealed a good match, with the exception of an underprediction of activity towards 
the second half of October. This match provides further justification for applying the flexible 
ETAS model, especially if future model improvements can be made.  
We conducted three retrospective forecast experiments to assess the influence of two factors: the 
frequency at which forecasts are updated and the magnitude threshold above which events are 
forecast. In the context of tectonic seismicity, more frequent updating and a lower magnitude 
threshold have both improved forecast skill. The ETAS model is a stochastic model, which means 
that future seismicity is governed by probability distributions. Simulations create scenarios from 
these probability distributions. Here, the three forecast experiments entailed (1) forecasts for 
events greater than magnitude -1 updated daily or at the beginning of each injection stage 
(whichever came sooner), (2) forecasts for events greater than magnitude -1 updated hourly or 15 
minutes after the beginning of each stage (whichever came sooner), and (3) forecasts for events 
greater than magnitude -1.5 updated hourly or 15 minutes after the beginning of each stage 
(whichever came sooner). At the start of each forecast period, we provide the model with the 
observed seismicity until then, and numerically simulate at least 1,000 scenarios over the next 
forecast period. The scenarios consist of occurrence times and magnitudes of events. From these, 
we compute the distribution of the number of events (or means, medians and 95% predictive 
intervals) and the magnitude distribution. We then compare these distributions to the observed 
data to check how well the data match the model simulations.  
On balance, the performance of the ETAS forecasts showed frequent successes and some 
discrepancies. The daily forecasts (experiment 1) were least successful: in nearly one in five 
forecast periods, the observed number of events was greater than the 95% confidence range 
forecast by the model. In other words, the model underpredicted significantly in about 20% of the 
forecast windows. The hourly forecasts (experiments 2 and 3) were more successful. In experiment 
2, the observed number of events were greater than the modelled 95% range in only 4% of the 
forecast windows. In experiment 3, about 8% of the time windows saw more events than were 
forecast by the model. Frequent updates are therefore important for reliable model forecasts. The 
forecasts slightly deteriorated when we lowered the magnitude threshold to -1.5 in experiment 3. 
The results of experiment 2, in particular, are encouraging: the modelled 95% range of the number 
of events in an hourly forecast window captures the observed number approximately 96% of the 
time. More qualitatively, the model also successfully captured some features of the data, namely 
the seismicity patterns characteristic of event-to-event triggering and the seismicity rate decays 
between stages that are similar to Omori’s law of aftershock decay.  
At the same time, however, the model sometimes underpredicted the number of events in the next 
forecast period, especially when that period contained stages with high and unclustered seismic 
rates. In short, the number of observed events fell into the modelled 95% confidence ranges 96% 
of the time, but during the 4% of windows when the observed number was outside the range, the 
observed number was larger than expected, and often substantially larger. (In the worst case, the 
model expected 14 events, the modelled 95%  range was 0-40, but 98 events actually occurred.) 
We believe that these challenges result from the model’s current inability to anticipate the variable 
seismic responses to hydraulic fracturing.  
Despite their moderate performance, the ETAS model forecasts could potentially have been 
helpful for operators, regulators and the public as a legitimate albeit imperfect view of the seismic 
risk as part of a broader decision making framework. The forecasts may be used to monitor 
expectations and to influence some decisions, with the explicit caveat that spontaneously strong 
seismic responses to injection might occasionally be missed by the model before it can update.  
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In our view, the above findings present a clear case for further research, particularly involving the 
independent dataset collected during subsequent hydraulic fracturing in 2019 at well PNR-2. 
Approaches need to be developed to solve the current discrepancies between two magnitude scales. 
This will allow more robust conclusions regarding b-values, differences with tectonic seismicity 
(including the maximum magnitude) and the chances of larger events, including felt and damaging 
events. Next, the present evaluation of the forecast performance of the original ETAS model needs 
to be tested on an independent dataset that was not used to calibrate the model. This will provide 
more confidence in the model performance, in addition to further development opportunities. In 
addition, and as mentioned above, it is possible that the lack of magnitude-dependent triggering 
we observe is a result of the relatively narrow range of magnitudes we examined. This should be 
revisited with more data. If more typical (tectonic) triggering is observed, we would expect the 
forecast skill of the model to improve when lowering the magnitude threshold. Finally, the current 
ETAS model is flexible enough to accommodate desirable modifications that take into account 
operational parameters such as injected volume or pressures, and to be combined with physical 
models of the change in the pore pressure and stress field. The datasets collected at Preston New 
Road present globally unique opportunities to further develop and improve these and other 
predictive tools for real-time seismic risk mitigation of shale gas exploration and other fluid 
injection operations such as geothermal energy exploration and carbon capture and storage.  
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1 Introduction 
Modelling the evolution of seismicity, natural or induced, is a challenge given our limited 
knowledge of the preparatory processes of seismic events. Recent advances in the development of 
earthquake forecast models can inform us about the spatio-temporal distribution of aftershocks in 
natural seismicity (Segou and Parsons, 2016). The ability to make reliable statistical forecasts of 
seismicity induced by hydraulic fracturing (HF) operations is highly desirable for the mitigation 
of risks of both disturbing and damaging ground motions. The large down-hole catalogue of micro-
seismicity recorded at the Preston New Road (PNR) site during HF operations between October-
December 2018 represents a unique opportunity to develop statistical forecast models that 
accurately describe the temporal distribution of the observed seismicity.  
Epidemic Type Aftershock Sequence models (ETAS – Ogata, 1988) encode well-documented 
statistical observations of seismicity in a flexible, stochastic manner. Magnitudes are drawn 
randomly and independently from the Gutenberg-Richter law (e.g. Van der Elst et al., 2016). Each 
event can trigger further events according to its magnitude (large quakes trigger exponentially 
more events), and triggered events have a (small) chance of being larger than the parent event. 
This feature of the model is consistent with the observation that the largest magnitudes do not 
exclusively occur in early post-mainshock phases (natural seismicity) or at the beginning of 
hydraulic fracturing operations (induced seismicity).  
Triggered seismicity is modelled to decay in time according to the Omori law, which characterises 
the rate of decay as an inverse power law. The model is completed with a rate of spontaneous 
events, which can generate triggered events that in turn can trigger subsequent generations. In the 
tectonic context, the spontaneous event rate is assumed to be constant. The ETAS formulation 
represents a powerful method to compute short-term occurrence probabilities of potentially 
damaging earthquakes, and the PNR calibrated model can be used in future stages, wells and 
developments.  
Although ETAS was originally developed for natural seismicity, its application has been extended 
to induced seismicity. Recent efforts to model earthquakes associated with enhanced geothermal 
systems (e.g. Bachmann et al., 2011; Mena et al., 2013) and waste-water injection for oil and gas 
production (e.g. Llenos and Michael, 2013), showed the effectiveness of this approach to model 
seismicity patterns during and after injection phases and forecast robustly the observed seismicity 
in terms of the number distribution of events and the magnitude distribution. 
The aim of this project was to evaluate the use of a time dependent ETAS model for making a 
statistical forecast of seismicity during hydraulic fracturing at PNR-1z. The primary input 
parameters for this model are dates, times, locations and magnitudes in the down-hole catalogue 
of micro-seismicity recorded at the Preston New Road (PNR) site during HF operations between 
October-December 2018, which consists of over 38,000 individual events with magnitudes as low 
as -2.5 Mw. We sought to assess if such a model could be used to inform future real-time decision-
making and risk mitigation during HF operations at sites across the UK and elsewhere. 

2 Epidemic Type Aftershock Sequence (ETAS) Model 
Forecasts 

In this section we describe the previous use of statistical ETAS models with examples from 
tectonic settings (natural seismicity) as well as cases of induced seismicity (HF operations). We 
present the mathematical framework for the implementation of the model together with description 
of the parameterisation procedure and the statistical metrics used for the validation of the forecast 
models. 
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2.1 BACKGROUND 
Although the prediction of future large earthquakes in natural seismicity settings is currently 
unattainable, the development of mathematical models that track the evolution of hazardous 
phenomena, such as earthquake cascades, are now within our reach (Jordan et al., 2011). Such 
mathematical models follow either empirical/statistical formulations, where the earthquake 
sequence is represented as a point process, or physical laws about earthquake nucleation. In this 
study we focus on the implementation of the ETAS model (Ogata, 1988), which corresponds to 
the most frequently used statistical descriptor of future earthquake probabilities. 
The primary input parameters are dates, times, locations and magnitudes reported in standard 
earthquake catalogues. The model relies on the robust quantification of key factors of the 
seismicity such as the Gutenberg-Richter b-value, which describes the behaviour of the frequency-
magnitude distribution for an earthquake population, the Omori p-value that characterizes how fast 
seismicity decays over time, as well as an exponent that describes the increase in triggering 
productivity with magnitude. The ETAS model is a widely used statistical model in which 
earthquake triggering follows a stochastic branching evolution and each earthquake produces its 
own offspring population, where triggered aftershocks with even larger magnitude than their 
parent events can occur at any time. This feature of the model is consistent with the observation 
that the maximum expected magnitude (Mmax) events do not exclusively occur in early post-
mainshock phases (natural seismicity) or at the beginning of hydraulic fracturing operations 
(induced seismicity). To illustrate the importance behind a reliable estimate of the expected 
earthquake rates it should be noted that a 10-fold increase of the number of expected events with 
magnitude M>1.0 results in a 100 times higher probability of observing at least one magnitude 
M=4 event. 
The success of forecast models to track the evolution of natural tectonic seismicity is often shown 
in pseudo-prospective experiments, where scientists are using data products that are usually 
available in real-time conditions, and/or fully retrospective experiments, where best-available data 
are employed to maximize the predictive skills of the models under test. Here we provide examples 
from recent research illustrating outputs of ETAS forecasts from California, Italy and elsewhere. 
Werner et al. (2011) showed that large earthquakes tend to occur near the locations of small (M>2) 
events by implementing different types of statistical forecasts for California, including an ETAS 
model, and testing their performance using the statistical metrics introduced by the Collaboratory 
for the Study of Earthquake Predictability (CSEP; Michael and Werner, 2018). They found that 
time-independent (Poissonian) earthquake rates (blue line; Figure 2-1) during earthquake crises 
fail to represent the short-term variability in the number of expected events. The results illustrate 
the importance behind the development of forecast models (red line; Figure 2-1) that can 
approximate the transient increase of observed seismicity rates (circles; Figure 2-1).  
The time-independent earthquake rates assume that seismicity is constant with time, which may 
be an accurate descriptor of long-term (e.g. hundreds of years) average seismicity in a region of 
interest; often implemented in building codes or provisions for critical structures. Within shorter 
time intervals the observed long-term earthquake rate fluctuates due to short-lived (transient) 
perturbations of the natural system (e.g. tectonic earthquakes) or other type of local perturbations 
(e.g. anthropogenic activity). Within these time intervals the probability of occurrence of a given 
magnitude event may be many times higher than the long-term average suggesting a higher 
transient in nature seismic hazard. However, any increased seismic activity will return to the long-
term average either slowly or rapidly, depending on the nature of the perturbation. The advantage 
of the ETAS model is the efficiency to determine within statistical significance these increased 
(above long-term average) seismicity rates within short-term (e.g. daily) time windows, here 
referred to as expected seismicity rates.  



 3 

Figure 2-1. (a) Comparison of the number of observed earthquakes per day greater than 
magnitude 3.95 with the forecasts of the ETAS model during the M6.1 Joshua-Tree, M7.3 
Landers and M6.4 Northridge earthquake sequences in California. The dashed blue line 
represents the time-independent forecast, the solid red line represents the ETAS model 
forecasts, and the solid horizontal line represents the background rate, describing the 
seismicity of the region of interest before the experiment starts (learning phase). (b) 
Probability gains per earthquake using as reference model the long-term model (blue line 
in (a)). Figure taken from Werner et al. (2011).  
One advantage in the implementation of ETAS models is the fact that they are catalogue-based 
and hence do not require any other information about the activated fault source or the regional 
fault system that are usually not available in real-time. The simplicity of the required input data, 
all of which is available in real-time, due to the existence of modern permanent seismic networks, 
makes ETAS the preferred model when it comes to real time implementation.  
Temporary networks deployed during evolving earthquake sequences provide scientists with the 
opportunity for new high-resolution testing of forecasts through the comparison of stress-based 
and statistical ETAS models. Mancini et al. (2019) showed the efficiency of preliminary ETAS 
models to describe the evolving 2016-18 earthquake cascade in the Central Apennines in short-
and long-term time windows (Figure 2-2). The data used corresponds to earthquakes with 
magnitude M>3.0. The evaluation of the models’ performance showed that only stress-based 
models with a high level of complexity in the representation of the seismic source and the 
surrounding shallow crust can compete with a standard ETAS model with optimized model 
parameters. 



 4 

Figure 2-2. Forecast time series for several physical stress based models (CRS) and an 
ETAS model (light grey). (a) Observed (triangles) and forecasted (squares) incremental 
number of events with M3+ for 200 days following the Mw=6.0 Amatrice mainshock. We 
note that for illustration purposes we plot values at 1 day intervals for each week after the 
primary events (vertical dashed lines), otherwise at 2 day intervals (b) Cumulative expected 
and observed (black solid line) seismicity with shaded areas representing Poissonian 
uncertainties. Figure taken from Mancini et al. (2019). 
Although ETAS was originally developed for natural seismicity, its application has been extended 
to studies of induced seismicity. Recent efforts to model earthquakes associated with geothermal 
exploitation (e.g. Bachmann et al., 2011; Mena et al., 2013) and waste-water injection for oil and 
gas production (e.g. Llenos and Michael, 2013) showed the effectiveness of this approach to model 
seismicity patterns during and after injection phases and forecast the observed seismicity in terms 
of number of events and magnitude distribution. 
Llenos and Michael (2013) demonstrated using ETAS models and statistical tests that the 
earthquake rate change (after injections started) is statistically significant, and both the background 
rate of independent earthquakes (before their time period of interest) and the aftershock 
productivity must increase in 2009 (after operations) to explain the observed increase in seismicity 
in Oklahoma and Arkansas (Figure 2-3). Both regions under study had previously experienced low 
but steady earthquake rates of approximately 2 events per year. The same authors suggest that for 
induced earthquakes the inter-event distance was significantly smaller than for natural earthquakes 
and that this parameter might be a useful criterion to distinguish between before, after, or far from 
active injection.  
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Figure 2-3. Oklahoma ETAS modelling results from Llenos and Michael (2013). The red 
dashed line represents the ETAS model for the catalogue fit before and during operations. 
ETAS provides a good fit, visually and quantitatively. 
Lei et al. (2017) investigated the case of hydraulic fracturing seismicity at the Shangluo shale gas 
site in the Sichuan Basin, China, an intraplate low seismicity environment (Figure 2-4). In the time 
period from 1970 to Oct. 2008 there are only 60 earthquakes with magnitude M>2.5 observed. 
However according to Lei et al. (2019) “between the start of shale gas prospecting in 2008 and 
2012, an increasing event rate was observed. Based on our survey, we believed that the limited 
well injections conducted for evaluation purposes might be responsible for the increase. Horizontal 
drilling began in 2011, while systematic shale gas hydraulic fracturing in those horizontal wells 
began in 2014. Since Dec. 2014, the earthquake rate increased dramatically in limited areas 
surrounding the hydraulic fracturing well pads, where (based on interviews during field surveys) 
local inhabitants reported feeling quakes at an abnormally high frequency.” 
The same authors have used ETAS model to describe the seismicity around the Shangluo shale 
gas site from 2014 onwards (Lei et al., 2017), marking the beginning of the high-quality relocated 
earthquake catalogue. They have observed that the earthquakes occurred in faults primed by the 
existing stress field orientations. The modelling results suggest that “injection-induced 
earthquakes (not including microseismicity from hydraulic fracture openings) demonstrate no 
significant differences from normal tectonic earthquakes in aspects such as mechanism solution, 
source process, and seismic b-value “. They find that the most important difference from tectonic 
activity is the low productivity (productivity=ability to trigger daughter events relative to the 
parent event magnitude). They conclude that collective work from academic, oil industry and 
regulatory communities is necessary to understand more about the mechanisms of hydraulic 
fracturing seismic activity. They note that short-term injections for shale gas hydraulic fracturing 
are likely to induce M4-5 earthquakes in the Sichuan Basin. The authors cite US, UK and Canada 
examples that recorded HF events have reached magnitudes in the range 2.0 to 4.6.  
Induced seismicity cases around the world have progressed our understanding of how to model 
such transients hazards, which may sometimes cause disruptions to nearby population centres and 
therefore require some form of mitigation minimise this risk. Implementation of statistical, and 
depending on the availability of the necessary high-quality data, physical models for earthquake 
triggering will provide a basis for ongoing risk assessment (Lee et al., 2019). According to this 
policy report from an international expert group for injection induced hazards, now published in 
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Science, “Best practice involves a formal process of risk assessment, with input from competent 
authorities, and the updating of this assessment as knowledge of the potential hazard evolves. 
Implementation of a comprehensive risk framework should incorporate scenarios of a triggered 
large earthquake. 

Figure 2-4. ETAS modelling results for event occurrence within the Shangluo shale gas 
block. Top: rupture parameters from the high resolution relocated earthquake catalogue 
for the largest earthquakes in the sequence. Middle: Number of observed events Bottom: 
Expected rate resulting from an ETAS forecast. Figure taken from Lei et al. (2017). 

2.2 TECHNICAL DESCRIPTION OF THE ETAS FRAMEWORK 

The ETAS seismicity corresponds to a point process with a stochastic spatiotemporal branching 
evolution, where each earthquake triggers its own offspring events, whose numbers depend on the 
parent’s magnitude and follow an Omori law decay in time. In the ETAS model, triggered 
earthquakes can have a larger magnitude than their parent event. The total seismicity rate λ (or 
“conditional intensity”) of the temporal ETAS model is defined as:  

𝜆(𝑡 | 𝐻𝑡) = 𝜇 + ∑ 𝑔(𝑡 −

𝑖:𝑡𝑖<𝑡

𝑡𝑖; 𝑀𝑖), (1) 

where μ is the background rate, a time-independent Poisson process, while the summation term 
represents the triggering history (Ht) from all preceding earthquakes occurring at ti < t. The 
triggering function is expressed by empirical relations, according to the form of Ogata (1998): 

𝑔(𝑡; 𝑀) = 𝐾𝑒𝛼(𝑀−𝑀𝑐𝑢𝑡) ∙ 𝑐𝑝−1(𝑡 + 𝑐)−𝑝(𝑝 − 1), (2) 
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with a normalized temporal distribution as the second term on the right-hand-side, respectively. 
The parameter K regulates the short-term aftershock productivity by a parent event with magnitude 
M equal or above a minimum triggering magnitude (Mcut), here set to -1 and -1.5; 𝛼 establishes 
the efficiency of earthquakes in triggering aftershocks as a function of magnitude. The second term 
on the right-hand side of equation (2) is the modified Omori law (Utsu, 1961) describing the 
distribution of triggered earthquakes in time in terms of a power law decay with exponent p and a 
short-term constant c.  
In this study, we use a temporal ETAS model, but a spatio-temporal version exists and can be 
considered in the future. A spatial model would also allow estimates of ground motions but would 
benefit from well constrained locations obtained via relocation with the double difference 
technique.  
The development of earthquake forecast models includes a validation step where the expected 
(model) is compared against the observed seismicity (nature). In this performance evaluation, we 
use well-established statistical metrics introduced by the Collaboratory for the Study of Earthquake 
Predictability (CSEP – Michael and Werner, 2018). This type of retrospective testing of the 
predictive skills of earthquake forecasts between statistical and/or physics-based models (e.g. 
Segou et al., 2013) is a crucial step towards their potential future operational implementation.  
We estimate the ETAS parameters by means of the maximum likelihood estimation (MLE) 
approach, with which we obtain the set of parameters that, given the observations (i.e. a seismicity 
catalogue with N events), maximize the following log-likelihood function (Zhuang et al., 2002):  

𝑙𝑜𝑔 𝐿(𝜇, 𝐾, 𝑐, 𝑝, 𝛼) = ∑ 𝑙𝑜𝑔 𝜆 (𝑡𝑖 | 𝐻𝑡) − ∫ 𝜆(𝑡) 𝑑𝑡

𝑇1

𝑇0

𝑁

𝑖=1

, (3) 

where T0 and T1 represent the start and end times for fitting. We use the R package PtProc by Harte 
(2010) to perform the estimation.  
The ETAS model considers the combination of triggering effects from background and evolving 
seismicity during the learning phase and within each forecast time period for the next forecast 
window. To improve the ETAS model within the same time interval, and before the next update, 
we simulate these future events. According to the simulation algorithm (Zhuang and Touati, 2015): 
(a) the number of future events is Poisson distributed with a mean rate controlled by the 
productivity law, (b) the occurrence times are sampled from the modified Omori law, (c) 
magnitudes are drawn from a Gutenberg-Richter distribution with b-value truncated at Mmax. In 
tectonic seismicity we take Mmax consistent with historical seismicity and modern regional strain 
rates (Rong et al., 2016). For higher generations of triggered events, the simulation process is 
repeated until the number of potential parent shocks eventually dies out.  

2.3 STATISTICAL VALIDATION OF FORECAST MODELS 

A number of statistical tests (Schorlemmer et al., 2007; Marzocchi et al., 2012 and references 
therein) are implemented within the Collaboratory for the Study of Earthquake Predictability 
(CSEP) in order to efficiently evaluate the spatio-temporal performance of short and long-term 
earthquake forecast models. We have implemented the modified N-test (Zechar et al., 2010) to 
compare the total number of observed vs. forecasted earthquakes over a precise time horizon. 
The N-test makes use of two metrics, under the assumption that the tested forecast is correct: δ1 to 
assess the probability of observing at least Nobs earthquakes given a forecast of Nfore, and δ2 to 
evaluate the probability of observing at most Nobs earthquakes given Nfore. To compute these two 
quantiles, we use a cumulative mass function F that is constructed from the model simulations:  

𝛿1 = 1 − 𝐹 ((𝑁𝑜𝑏𝑠 − 1) | 𝑁𝑓𝑜𝑟𝑒) , (4) 
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𝛿2 = 𝐹(𝑁𝑜𝑏𝑠 | 𝑁𝑓𝑜𝑟𝑒).  (5) 

We then evaluate the N-test by applying a one-sided significance test and we ‘reject’ the forecast 
if either 𝛿1(𝑡) < 𝛼 or 𝛿2(𝑡) < 𝛼, where 𝛼 = 0.025 is the effective significance value (Zechar et al., 
2010). Based on the multiple N-tests over successive forecast periods, we define the N-test 
rejection ratio (𝑅𝑁) for our models expressing the percentage of time that a given model does not 
pass the N-test over the selected testing period.  
In less formal terms, a “rejected” forecast indicates a potentially significant discrepancy between 
model and data. Scientific or practical significance of the discrepancy will depend on the context 
and usage. “Rejected” forecasts may thus still be good enough to be useful.  

3 Summary of Operations 
The PNR-1z well targets the Bowland shale at a depth of approximately 2,300 m, and runs 
approximately east-west for 700 m horizontally through the unit. A sliding-sleeve completion 
method was used, with 41 individual sleeves spaced at intervals of 17.5 m along the well. The 
hydraulic fracture plan allowed for up to 765 m3 of fluid per sleeve. A “mini-frac” consisting of a 
few 10s of m3 of fluid was pumped prior to each main stage. The sleeves were numbered from 1 
to 41 proceeding from the toe (west) to the heel (east) of the well. A total of 16 sleeves were 
hydraulically fractured with an additional 18 mini-fracs between 16 October 2018 and 17 
December 2018. The sleeves were used in the following order: 1, 2, 3, 12, 13, 14, 18, 22, 30, 31, 
32, 37, 38, 39, 40 and 41. The average injected volume for each fracture was 234 m3 and the 
maximum injected volume was 431 m3. No hydraulic fracturing was carried out between 3 
November and 4 December as flow-back from the well took place. 

4 Data and Exploratory Analysis 

Figure 4-1. Downhole acquisition geometry showing locations of sleeves in well PNR-1z (red 
squares) and the geophones in PNR-2 (blue squares). (a) plan view, (b) East-West cross-
section and (c) North-South cross section. 
The microseismicity at PNR-1 was acquired with a downhole geophone array in the adjacent PNR-
2 well. This monitoring setup is shown in Figure 4-1. The geophones were located in the heel of 
the well resulting in approximate path lengths from the sleeves in PNR-1z of between around 200 
to 800 m. The geophones recorded continuously from the onset of operations, detecting over 
38,000 microseismic events. The event catalogue for this project consisted of origin times, 
locations and magnitudes of these events as determined by a geophysical processing contractor. 
No information was available on the method used to locate individual events or the location 
uncertainties. Typical location uncertainties for downhole microseismic data are around 10-20 m 
in depth and slightly larger uncertainties in horizontal location. Similarly, although the magnitudes 
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are reported as moment magnitudes (Mw), no information was available on how this was 
determined or the magnitude uncertainty. Although a systematic study of event locations is outside 
the scope of this report we note that the acquisition geometry may result in some bias in location 
estimates, which may propagate into magnitude estimates. 
We encountered two additional issues with the catalogue as provided. Firstly, the precision of the 
event origin times was limited to 1 second. This lack of precision meant that there were around 
1600 events which shared an origin time with at least one other event. Secondly, it was known that 
the limited dynamic range of the downhole geophones meant that magnitude estimates for events 
with magnitudes larger than 0.0 Mw were saturated and could not be considered reliable. To 
address this problem, we found matching events from the catalogue of events detected and located 
using the dense array surface sensors deployed partly in order to comply with regulatory 
requirements. This latter catalogue consisted of 172 events with magnitudes given as local 
magnitude (ML). We replaced the moment magnitudes for all events in the downhole catalogue 
with magnitudes greater than 0.0 Mw with the local magnitude estimate for corresponding event in 
the surface catalogue. Ideally, local magnitudes would have been converted to Mw, however, we 
find the conversion relationship given in the Cuadrilla Hydraulic Fracture Plan (2019) and based 
on the relationship derived from the Munafo et al. (2016) does not appear to fit the observed data. 

Figure 4-2. Comparison of the Mw estimates from the downhole catalogue with the ML 
estimates for matching events in the surface catalogue. The red lines shows the ML/MW 
conversion relationship given the in Cuadrilla HFP (2019) 
Figure 4-2 shows a comparison of the Mw estimates from the downhole catalogue with the ML 
estimates for matching events in the surface catalogue along with the ML/MW conversion 
relationship given in the Cuadrilla HFP (2019). The latter was derived using moment magnitudes 
and local magnitudes calculated using surface recordings. We observe a clear difference between 
the observed magnitudes and the relationship, which appears to be a result of lower moment 
magnitude values in the downhole catalogue than those used to derive the relationship. Application 
of this ML/Mw conversion to the matching events with Mw > 0.0 will result in a jump in the 
magnitude estimates. As a result of this issue, we instead assume an equivalence between ML and 
Mw and use the ML magnitude values for all events with Mw > 0.0. 

4.1 EVENT BEHAVIOUR IN SPACE AND TIME 

Locations for all events in the catalogue are shown in Figure 4-3. Events are coloured by time and 
move from west to east corresponding to different stages of hydraulic fracturing in the horizontal 
well PNR-1z. The locations of the events closely correspond to the positions of the sleeves that 
were hydraulically fractured (coloured squares in Figure 4-3). Event depths are around 2280 m, 
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but decrease slightly from around 2300 m at the toe of the well to approximately 2250 m closer to 
the heel. 

Figure 4-3. (a) Map of all events in the microseismic catalogue. Events are coloured by time 
and scaled by magnitude. The coloured squares show the locations of the sleeves that were 
hydraulically fractured. The squares are coloured using the same colour scale as the events. 
Axes show British National Grid Eastings and Northings. Grey squares show geophone 
positions. (b) Depth cross-section showing event depths along an east-west profile. 
Figure 4-4 shows a histogram of the number of events/hour as a function of time during operations 
along with the cumulative volume of injected fluid during hydraulic fracturing (blue line). Event 
rates increase when injection starts and decay rapidly with time after injection stops. There is 
considerable variation in event rates between individual stages of operations, with some showing 
relatively high activity rates. For example, sleeves 22, 30, 31 and 32 on 25, 26, 27 and 29 October, 
all had relatively high levels of detected seismicity. Similarly, sleeves 38, 39 and 40 on 11, 13 and 
14 December also have relatively high levels of detected seismicity. These sleeves are all at or 
closer to the heel (east) end of the horizontal part of the well and all the events with magnitudes 
greater than 0.5 ML occurred during these hydraulic fracture stages. Conversely, sleeves 1, 2 and 
3 on 16, 17 and 18 October at the toe (west) end of the well all have relatively low levels of 
seismicity, despite similar injected volumes. 



 11 

Figure 4-4. Histograms showing the number of events/hour as a function of time during 
operations. The grey shaded bars show all events, the red bars show events with magnitudes 
of -1.5 Mw or above. Blue lines show the cumulative volume of injected fluid during hydraulic 
fracturing operations. (a) shows seismicity in October/November and (b) shows activity in 
December. No hydraulic fracturing was carried out between 3 November and 4 December. 
Similarly, Figure 4-5 shows histograms of the number of events during each stage along with the 
injected volume of fluid. This allows us to examine the relationship between injected volume and 
event rates in greater detail. Event rates are observed to increase as soon as injection starts and 
generally reach a peak towards the end of the period of injection. After injection stops, the rates 
decay quickly over the subsequent hours. Histograms for those stages that show more complex 
injection histories, e.g. stages 22 and 30, also show multiple peaks in activity rate that correlate 
with the observed periods of injection. 

4.2 FREQUENCY MAGNITUDE DISTRIBUTION 

The relationship between the magnitude and number of earthquakes in a given region and time 
period generally takes an exponential form that is referred to as the Gutenberg-Richter law 
(Gutenberg and Richter, 1954), and is commonly expressed as 

log10 𝑁 = 𝑎 − 𝑏𝑀  (6) 
where N is the number of earthquakes above a given magnitude M. The constant a, is a function 
of the total number of earthquakes in the sample and is known as the earthquake rate. This is often 
normalised over period of time, such as a year. The constant b gives the proportion of large events 
to small ones, and is commonly referred to as the b-value. In general, b-values are close to unity 
for tectonic earthquakes. This means that for each unit increase in magnitude, the number of 
earthquakes reduces tenfold. However, higher b-values have often been observed for induced 
seismicity (e.g Bachmann et al, 2011). 
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Figure 4-5. Histograms showing the number of events/hours as a function of time during 
operations. The grey shaded bars show all events, the red bars show events with magnitudes 
of -1.5 Mw or above. Blue lines show the cumulative volume of injected fluid during 
hydraulic fracturing operations. 
Plotting magnitudes against the logarithm of frequency should therefore give a straight line, where 
the slope of the line is the b-value and the rate, a, is the value where the line intersects with a given 
reference magnitude. However, observational data generally shows a roll-off in the number of 
earthquakes at low magnitudes due to inability to detect small earthquakes. This roll-off in the 
magnitude-frequency relationship at low magnitudes leads to the concept of a completeness 
magnitude, Mc, which can be defined as the lowest magnitude at which (approximately) 100% of 
the earthquakes in a space-time volume are detected (Rydelek and Sacks, 1989). A correct estimate 
of Mc is crucial since a value too high leads to under-sampling, by discarding usable data, while a 
value too low leads to erroneous seismicity parameter values and thus to a biased analysis, by 
using incomplete data. 
Following Aki (1965), we calculate the b-value using  

𝑏 =  
𝑙𝑜𝑔10(𝑒)

〈𝑀〉 −  (𝑀𝑐 −  
∆𝑀

2 )
 (7) 

where ⟨M⟩ is the mean magnitude of the sample (with M ≥ Mc) and ∆M is the binning width of the 
catalogue. Figure 4-6 shows both b-value (a) and activity rate (b) as a function of Mc. This shows 
that the b-value estimate is strongly dependent on Mc and only starts to stabilize at values of around 
-1.0, before fluctuating again due to under-sampling at the higher end of the frequency magnitude 
distribution. 
To further assess the completeness of the catalogue we calculated magnitude of completeness, Mc, 
using the b-value stability method of Cao and Gao (2002). This model is based on the assumption 
that b−value estimates ascend for cut-off magnitudes less than Mc and remain constant for cut-off 
magnitudes greater than or equal to Mc, as demonstrated in Figure 4-6. This gives Mc = -1.0. We 
then calculate the b-value for the catalogue using maximum likelihood method of Aki (1965).  
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Figure 4-6. b -value (a) and a-values estimates as a function of completeness magnitude Mc 
for the entire downhole catalogue.  

−

Figure 4-7(a) shows the frequency magnitude distribution for incremental (red) and cumulative 
data (blue) from the entire down-hole microseismic catalogue, together with the maximum 
likelihood estimates of the b-value and activity rate for calculated completeness magnitudes of -
1.0 (a). This gives a b-value of 1.568 and an activity rate of 1.673. The high b-value for the entire 
catalogue seems to agree with high b-values calculated for other examples of induced seismicity. 
However, only around 5 % of the events in the catalogue have magnitudes that are greater than the 
magnitude of completeness. This greatly reduces the number of events that can be used for the 
ETAS modelling. As a result, we also calculated a b-value for a slightly less conservative value of 
completeness magnitude of -1.5, obtaining a b-value of 1.272 and an activity rate of 1.939. Using 
this value of Mc increase the number of events that can be used for the ETAS forecast to around 
20% of the catalogue. 

Figure 4-7. Frequency magnitude distributions for incremental (red) and cumulative data 
(blue). The blue dashed lines show the maximum likelihood estimates of the b-value and 
activity rate for completeness magnitudes of -1.0 (a) and -1.5 (b). 
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Finally, we examine how b-values and activity rates vary during individual stages of operations. 
Figure 4-8 shows frequency magnitude distributions, b-values and activity rates calculated using 
events that occurred during each stage of operations. The b-values do appear to change from stage 
to stage, with very high values in the first few stages of operations. Values then appear to decrease 
as operations progress. However, it is difficult to assign significance to the changes without a more 
comprehensive analysis of the uncertainties associated with the individual values. As expected, 
we do see the calculated activity rate increase during those stages where larger number of events 
were recorded.  

Figure 4-8. Frequency magnitude distributions, b-values and activity rates calculated using 
events that occurred during each stage of operations. B-values and activity rates were 
calculated using Mc = -1.0. 

4.3 DISTRIBUTION OF THE INTER-EVENT TIMES 

The distribution of inter-event times provides a useful tool to assess the seismicity patterns and the 
character of temporal clustering (e.g. Hainzl et al., 2006, Touati et al. 2009, Saichev and Sornette, 
2006). Inter-event times refer to the durations between successive events: Given a randomly picked 
event, how long until the next event?  
Features of the distribution can be explained by the underlying seismicity patterns. For example, 
inter-event times between random and independent (Poissonian) occurrence times follow an 
exponential distribution. Meanwhile, temporal aftershock clustering according to the Omori law 
will generate power-law distributed inter-event times with a power-law exponent close to the 
Omori p-value (e.g. Hainzl et al., 2006). The inter-event times in ETAS model simulations follow 
a combination of these two in a distribution consisting of three parts: (i) extremely short inter-
event times up to a few hours are equally likely (a short-term high plateau corresponding to the 
Omori law up to the constant c-value), (ii) a mid-term power-law decay due to Omori’s power law 
that identifies temporal clustering, and (iii) a long-term exponential decay that lacks clustering and 
identifies the independent background rate of spontaneous, unclustered earthquakes. Deviations 
of the observed distribution from the ETAS model can provide insight into the seismicity patterns 
and generating mechanisms at PNR-1z.  
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Figure 4-9 illustrates inter-event time distributions from distinct periods of the operations as well 
as the distribution of the entire dataset. Several interesting patterns emerge. First, temporal power-
law clustering is present. The existence of the temporal clustering provides some justification for 
the ETAS modelling approach. Panel (d) shows convincing evidence of temporal clustering similar 
to Omori’s law over two orders of magnitude, albeit with a greater p-value than often observed in 
tectonic seismicity. Interestingly, we observe Omori-type clustering with a p-value closer to 
tectonic values during the period without stimulation (panel b). In contrast, the seismically 
productive stage 37 shows steeper decay (panel c).  
Second, in contrast to tectonic catalogues, we observe no evidence of the long-term exponential 
decay in any of the periods. This merely shows that the microseismic catalogue is too short to 
capture the long-term tectonic background rate, which is not surprising given the low natural rates 
in the area (Baptie and Luckett, 2019). 
Third, the short-term plateau appears to be of different character than the ETAS model prediction 
and suggests that events in this range are predominantly generated by direct stimulation rather than 
event-to-event triggering. The difference in the short-term plateau between stages 3 and 37 show 
that this directly-induced seismicity can vary in intensity and shows characteristic rates. This high-
rate unclustered component of the observed seismicity presents challenges for ETAS modelling, 
which expects short inter-event times to be dominated by triggering. The failure to capture this 
short-term component contributes to challenges in forecasts of the number of events. This 
identified model deficiency, however, also suggests potential avenues for future model 
improvements.  

Figure 4-9. Inter-event time distributions of the PNR-1z microseismic catalogue above the 
completeness magnitude Mc=-1. Red line indicates Omori law temporal clustering with p-
value of unity. (a) Stage 3, combining a mini and main frack. (b) During the pause in 
operations between 3 November and 7 December. (c) Stage 37. (d) Entire catalogue. Panels 
(a)-(c) show inter-event times normalised to the average rate during the period. 
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5 Model Calibration and Simulation Framework 
5.1 MAGNITUDE DISTRIBUTION, B-VALUE AND MAXIMUM MAGNITUDE 
Maximum magnitude (Mmax) describes the size of the largest possible earthquake in a given region. 
This is often highly uncertain, particularly in intraplate regions (Holschneider et al., 2011, 2014) 
where the recurrence interval of large earthquakes is of the order of several hundred to thousands 
of years due to the low rate of deformation and greatly exceeds the relatively short duration of any 
catalogue based on historical data. 
In the British Isles, the largest earthquake for which a magnitude can be estimated reliably is the 
magnitude 5.9 Mw Dogger Bank earthquake on 7 June 1931. However, earthquakes of Mw ≥ 6.0 
have occurred in analogous tectonic regions. For example: magnitudes of 8.1 Mw, 7.8 Mw and 8.0 
Mw in the 1811-1812 New Madrid earthquake sequence (Johnston and Schweig, 1996); the 
magnitude 7.3 ML Charleston earthquake in South Carolina in 1886; the magnitude 7.2 ML 
Meeberrie earthquake in Western Australia in 1941 (Johnston et al., 1994), and the magnitude 6.6 
± 0.5 Mw 1356 Basel earthquake in Switzerland in 1356, which is the largest earthquake ever 
recorded in north-west Europe (Fäh et al., 2011).  
Meletti et al. (2010) follow a statistical approach (see Johnston et al., 1994) to determine the Mmax 
distribution in areas of low seismicity for the 2013 European Seismic Hazard Model (ESHM13) 
as part of the Seismic Hazard Harmonisation in Europe (SHARE) project (Woessner et al., 2015). 
We use the same values in this study. The starting point for this method is information from an 
analysis of the global dataset of seismicity for stable continental regions in Johnston et al. (1994). 
Then, this is updated with local information available for the study area using a Bayesian approach. 
In this way, the lack of high seismicity in the study area is compensated for by observations from 
analogous tectonic regions. The resulting Mmax distribution contains magnitudes of 6.5, 6.7, 6.9 
and 7.1 with weights of 0.5, 0.2, 0.2 and 0.1 respectively.  
To simplify the computation of the numerically intensive ETAS forecasts, we selected an initial 
single value of the maximum magnitude of 6.5, reflecting the most likely value according to the 
SHARE approach. We chose this Mmax because a more context- and region-specific estimation is 
difficult and beyond the scope of this project.  

5.2 ETAS MODEL CALIBRATION  
To obtain the set of parameters that define the conditional intensity function of equations (1) and 
(2), we fit a temporal ETAS model to the PNR-1z catalogue resulting from the event matching and 
magnitude assignment described in section 4, for its entire length (15 October to 18 December 
2018). We derive the parameters using maximum likelihood estimation (MLE, see equation 3). 
Following the Mc values reported in section 4.2, we invert two sets of ETAS parameters: the first 
(ETAS-1Mcut) obtained by fixing a minimum triggering magnitude (Mcut) of -1.0, the second 
(ETAS-1.5Mcut) by setting Mcut = -1.5. For both the inversions, we fix the MLE b-value 
corresponding to the respective Mcut (b=1.568 and b=1.272 for ETAS-1Mcut and ETAS-1.5Mcut, 
respectively), and we leave all the remaining parameters unconstrained. 
We summarize the two sets of ETAS parameters in Table 5-1. 

Parameter ETAS-1Mcut ETAS-1.5Mcut Description 

Mcut -1.0 (fixed) -1.5 (fixed) Minimum triggering magnitude 

𝜇 1.086 5.367 Background rate 

K 0.962 0.946 Productivity parameter 

𝛼 -0.442 -0.115 Productivity parameter 
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c (days) 0.0017 0.0020 Omori-Utsu c-value 

p 1.534 1.757 Omori-Utsu p-value 

b 1.568 (fixed) 1.272 (fixed) Gutenberg-Richter b-value 

n 0.85 0.91 Branching ratio 

Table 5-1. ETAS parameters used for the simulations 
Some of the estimated parameters are highly unusual in comparison to typical estimates (e.g., Seif 
et al, 2017). The productivity exponent 𝛼 is usually in the range 1.5 to 2.5 and captures the 
exponential increase of triggering productivity with magnitude. Here, however, the parameter is 
close to zero and possibly negative, suggesting either little effect of the magnitude on the number 
of triggered events or possibly a decrease in productivity with magnitude. We interpret this as a 
result of the challenge to capture the directly induced seismicity, which may not show the usual 
triggering patterns as also documented in the inter-event time distributions. It is plausible that the 
model is compensating for the variability of the directly-induced and unclustered rates by 
eliminating the magnitude-dependent triggering effect and replacing it by strong but magnitude-
independent triggering (K is relatively large). In this way, the model could generate high rates after 
any event independently of its magnitude and attempt to reproduce the high rates observed during 
injections.  
We also observe a higher-than-usual p-value of 1.53 for Mcut=-1. A value larger than 1.5 is rare in 
natural seismicity. The catalogue is much shorter than typical catalogues, suggesting caution in 
drawing a firm conclusion. However, the high p-value is consistent with the fast decay seen in the 
inter-event time distributions in particularly active stages, which dominate the statistics. In 
contrast, the period of relative calm without stimulation shows a more slowly decaying rate with 
p closer to one. In summary, the high p-value may be a trade-off between the fast decay seen 
during very active stages and the slower decay seen in quieter stages and in between.  
A more detailed uncertainty analysis taking into account parameter covariances is needed before 
firmer conclusions can be reached, but this was beyond the scope of this project. For example, K 
and 𝛼 are known to be anti-correlated (e.g. Seif et al., 2017 and references therein), and the p-
value may depend on the length of the catalogue. However, in our experience the observed values 
are extreme, suggesting that a component of the seismicity is not well captured by the model, while 
another component (triggered seismicity) is well captured.  

5.3 RESIDUAL ANALYSIS (GOODNESS-OF-FIT) 
To assess the goodness-of-fit of the model to the data, we performed a residual analysis, which is 
a standard and powerful tool to assess the ETAS model fit statistically and visually (e.g., Ogata 
1988). This is important as parameters can almost always be estimated, but the quality of the fit 
must be assessed separately.  
The basic idea is to compare the continuously changing conditional intensity function (the 
calibrated model) against the evolving number of observed events. The integrated conditional 
intensity function (conditional on the steadily accumulating history) should always approximately 
equal the number of observed events. It can be shown that the fluctuations of a well-calibrated 
model (i.e. one that fits the data) should be those of a Poisson process of unit rate. Vice versa, 
significant deviations of the integrated conditional intensity function from a unit Poisson process 
will highlight discrepancies between model and data. For details, we refer the reader to (Ogata,  
1988, Werner, 2008, and references therein).  
Figure 5-1 compares the observed seismicity against the calibrated conditional intensity function 
of ETAS-1Mcut. The figure illustrates the rapid variability of the function, which can be thought of 
as an instantaneous probability of occurrence. The rate shoots up after each event, but decreases 
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rapidly. During active injection, the contributions from each event to the total rate add up quickly, 
e.g. on day 10 or 60. The total rate is then orders of magnitude larger than the constant background 
and is therefore able to anticipate the occurrences of subsequent events in the stage or just after 
the injection. Isolated events (e.g., on day 50) generate a brief spike but their contributions usually 
decay too quickly to increase the likelihood of the next event with respect to the background rate.  

Figure 5-1. Top: Magnitudes above Mc=-1 and occurrence times of the PNR-1z 
microseismicity between August and December 2018. Bottom: calibrated conditional 
intensity function (instantaneous probability) of ETAS-1Mcut illustrating its variability and 
the cumulative effect of individual contributions during particularly active periods. 
Figure 5-2 shows the residual analysis that compares the expected number of events with the 
observed number of events. The figure illustrates that the continuous conditional intensity 
function, when it is updated continuously with the evolving history, is able to match the observed 
seismicity surprisingly well given the atypical parameter estimates. This is very encouraging. On 
the other hand, the model is underestimating the rate between event numbers 500 and 1000, 
approximately between days 9 and 15 of operations.  
In practice, forecasts are made at specific times for specific time horizons and will only be updated 
at regular intervals or at special times (e.g. when larger events happen or during a stage). Such 
forecasts must be constructed from model simulations and cannot make use, at the time they are 
issued, of the seismicity during the forecast window. This leads to a loss of predictive skill of the 
forecasts. In the ETAS framework, this is the only way, however, to generate forecasts that take 
into account the past history and project over a finite time horizon without instantaneous updating.  



 19 

Figure 5-2. Residual analysis showing goodness-of-fit of the calibrated model. The black lines 
shows the observed versus the expected number of events, obtained by intregrating the 
calibrated conditional intensity function with the continuously updated history. The dashed 
red line indicates a perfect fit. The goodness-of-fit is good overall, but shows underestimation 
between event numbers 500 and 1000. 

5.4 FORECASTS BASED ON ETAS SIMULATIONS 
We fixed the ETAS parameters during the whole forecast horizon, and we used them to simulate 
a set number of catalogues of synthetic occurrence times and magnitudes. All simulations began 
at the starting time of the first injection stage at sleeve 1. We tested the performance of two 
simulation strategies: (a) for ETAS-1Mcut , simulations updating either every 24 hours or at the 
beginning of each injection stage (whichever came sooner), and (b) for ETAS-1Mcut and ETAS-

1.5Mcut, simulations updating hourly or 15 minutes after the beginning of each injection stage. We 
included the additional 15 minutes within each stage to allow the model to take into account the 
early stage-specific activity that could trigger subsequent microseismicity. 
For reasons of computational efficiency, we performed 10,000 simulations for the daily forecasts, 
while we limited the number of simulated catalogues to 1,000 for the hourly forecasts. 

6 Performance Evaluation of the Forecasts 
In this section, we present the retrospective forecasts in the form of (a) a comparison of observed 
vs. expected temporal evolution of the seismicity, both as incremental and cumulative number of 
events with time, and (b) a comparison of observed vs. simulated frequency-magnitude 
distributions (FMDs). Then, we assess the temporal performance of the forecasts using their 
rejection ratios (Rrej), defined as the percentage of forecast windows in which the observed number 
did not fall into the 95% predictive model interval. A lower value of Rrej corresponds to better 
predictive skills of the model under test, specifically to simulated ranges that enclose the 
observations. 
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6.1 DAILY ETAS-1MCUT MODEL 
Figure 6-1a presents the observed and expected number of M ≥ -1 events per day. We note that 
ETAS-1Mcut projects the onset of the seismicity with a 24 hours delay with respect to the start of 
our observations, missing the first 77 events due to its relatively low updating frequency (every 24 
hours) and the lack of M ≥ -1.0 parent earthquakes within the first time interval of interest. 
Following these first few time intervals, the model recovers and estimates expected seismicity 
rates although it underpredicts the cumulative number by approximately one order of magnitude.  
The incremental and cumulative timeseries (Figure 6-1 a-b) reveal that during high-rate periods 
the model underestimates to the point of being rejected (Figure 6-1c). However, the daily ETAS-

1Mcut adequately reproduces the temporal decay of earthquakes between subsequent injection 
stages, when the earthquake rates are low to moderate. During the central part of the experiment, 
dominated by a 35-day pause of operations period, the seismicity appears mostly governed by 
event-to-event interactions (November 3rd – December 7th); in this time period the observations 
always fall within the ETAS-1Mcut confidence bounds, hence the forecasts are accepted (green 
circles in Figure 6-1a). The overall rejection ratio of the model is 19%, i.e. the data will be outside 
the 95% forecast range in about 1 in 5 forecast periods.  
We note that the 95% confidence bounds of ETAS-1Mcut always encompass the critical value of 
zero events, meaning that the model predicts at least a 2.5% probability of no events with 
magnitude M ≥ -1.0, including even the most seismically productive days. Such a result reveals 
the high level of stochasticity of the forecast, which is an intrinsic characteristic of the ETAS 
framework and reflects a lack of forecast specificity.  

6.2 HOURLY ETAS-1MCUT AND ETAS-1.5MCUT MODELS 

Figures 6-2 and 6-3 illustrate the performance of the hourly updated ETAS models for Mcut = -1.0 
(ETAS-1Mcut) and Mcut = -1.5 (ETAS-1.5Mcut), respectively. In the hourly updated model there is only 
a limited number of new events between successive time windows, therefore we expect a model 
improvement. In spite of the persistent underestimation of observed rates during high seismicity 
rate periods, the overall rejection ratios for the ETAS-1Mcut and ETAS-1.5Mcut are 4% and 8%, 
respectively (Figures 6-2c and 6-3c). These results underline the importance of frequent model 
updates in agreement with past research results from natural seismicity (e.g. Segou et al., 2013). 
Results show that the 1-hour time window implementation is essential for (a) the reduction of the 
level of initial underestimation of the daily ETAS realizations by a factor larger than 2 and, (b) the 
rapid convergence of the model towards the observed rates. When we compare the cumulative 
timeseries of the hourly (Figures 6-2b and 6-3b) vs daily (Figure 6-1b) ETAS realizations, we 
observe that the hourly forecasts model the seismicity evolution better, especially in the first 3-4 
days following the onset of operations. In other words, the rapidly changing seismicity at PNR-1z 
requires a frequent model update strategy. We do not observe a substantial improvement when 
including an Mcut=-1.5 for the last ETAS implementation. It is possible that completeness issues 
are influencing the quality of the ETAS-1.5Mcut forecasts, but this requires further investigation. 
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Figure 6-1. Forecast time series and observed vs. expected number of events for the daily 
updated ETAS-1Mcut model. (a) Observed (circles) and mean forecasted (squares) incremental 
number of M ≥ -1 events for the 64 days of operations. The yellow bars represent the 95% 
confidence bounds of the ETAS forecast. The colour of the circles indicates whether the 
observed number of events per daily time bin falls within (green) or outside (red) the ETAS 
confidence bounds. (b) Observed (black line) and mean expected (blue line) cumulative 
seismicity with shaded areas representing Poissonian uncertainties. (c) Observed vs. 
expected number of events; red circles indicate forecast rejection, while green ones indicate 
that the model adequately forecasts the number of events. 
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Figure 6-2. Forecast time series and observed vs. expected number of events for the hourly 
updated ETAS-1Mcut model. (a) Observed (circles) and mean forecasted (squares) incremental 
number of M ≥ -1 events for the 64 days of operations. The yellow bars represent the 95% 
confidence bounds of the ETAS forecast. The colour of the circles indicate whether the 
observed number of events per daily time bin falls within (green) or outside (red) the ETAS 
confidence bounds. (b) Observed (black line) and mean expected (blue line) cumulative 
seismicity with shaded areas representing Poissonian uncertainties. (c) Observed vs. 
expected number of events; red circles indicate forecast rejection, while green ones indicate 
that the model adequately forecasts the number of events. 
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Figure 6-3. Forecast time series and observed vs. expected number of events for the hourly 
updated ETAS-1.5Mcut model. (a) Observed (circles) and mean forecasted (squares) 
incremental number of M ≥ -1 events for the 64 days of operations. The yellow bars represent 
the 95% confidence bounds of the ETAS forecast. The colour of the circles indicate whether 
the observed number of events per daily time bin falls within (green) or outside (red) the 
ETAS confidence bounds. (b) Observed (black line) and mean expected (blue line) 
cumulative seismicity with shaded areas representing Poissonian uncertainties. (c) Observed 
vs. expected number of events; red circles indicate forecast rejection, while green ones 
indicate that the model adequately forecasts the number of events. 
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6.3 COMPARISON OF FREQUENCY MAGNITUDE DISTRIBUTIONS 
Here we present the frequency-magnitude distributions (FMDs) resulting from the ETAS model 
simulations under the daily/hourly ETAS-1Mcut and the hourly ETAS-1.5Mcut implementations. The 
daily updated model underestimates the observed FMD by an order of magnitude. The results from 
both hourly updated ETAS models reproduce the observed FMD more closely. Although the 
model that best fits the observed FMD (ETAS-1.5Mcut) generates seismicity up to M2.0 in 95% of 
simulations, events above M=2.0 are rare but can occur. For example, 1 in 1,000 simulations 
generates a magnitude 3. For comparison, the daily updated ETAS-1Mcut predicts no occurrences 
above M=1.2 within its 95% simulation range, making the observed December M=1.6 unlikely if 
the forecasts were correct. Increasing the number of simulations would continue the downward 
trend of the mean number in agreement with the log-linear Gutenberg-Richter decay. On the basis 
of the comparison of the simulated and observed FMDs, we find no evidence to reject the 
maximum magnitude set from historical data for the UK (M=6.5). (However, a range of other 
maximum magnitudes – both lower and higher – would also be consistent with the observed 
magnitude distribution.) 

Figure 6-4. Observed vs. simulated frequency-magnitude distributions for the daily and 
hourly updated ETAS-1Mcut and hourly updated ETAS-1.5Mcut models. 

7 Conclusions 
The rich microseismicity catalogue resulting from the combined surface and downhole monitoring 
of the Preston New Road hydraulic fracturing operations offers a unique opportunity to improve 
our scientific understanding of induced seismicity in low deformation regions. The estimated 
magnitude of completeness of the catalogue (Mc=-1.0) is three orders of magnitude lower than 
standard earthquake catalogues from networks in high seismic hazard countries. This provides a 
unique window into the generation and triggering processes down to very small magnitudes.  
The effects of magnitude uncertainties, especially for the small magnitude ranges, can cause bias 
in the estimation of the Gutenberg-Richter frequency-magnitude distribution. This can be 
corrected when standard errors of magnitude estimates are known (Rhoades and Dowrick, 2000). 
The comparison between the moment magnitude (Mw) of the PNR downhole microseismic 
catalogue and the local magnitude (ML) of the surface catalogue confirms a discrepancy that was 
previously reported by Kendall et al. (2019). This discrepancy cannot be reconciled using existing 
MW to ML conversions equations such as those developed in the UK for similar magnitude-distance 
ranges (e.g., Butcher et al., 2017). The lack of a coherent measure of size of a seismic event has a 
number of important implications. The estimation of the magnitude distribution’s b-value and thus 
the extrapolation to the likelihoods of larger magnitudes will be more uncertain than usual. In 
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addition, models that forecast seismicity using catalogues as input will also be affected adversely. 
We recommend additional work to solve this issue.  
The calibration of the statistical seismicity model requires a magnitude distribution and five 
parameters that can be estimated directly from the PNR-1z microseismicity catalogue. We found 
a good fit of the Gutenberg-Richter (exponential) distribution to the data with a b-value of about 
1.5. Formal uncertainties do not express potential systematic bias due to the two magnitude scales. 
It is conceivable, though unlikely, that the b-value of consistently calibrated magnitudes is closer 
to the typical tectonic value near unity. We chose a precautionary maximum magnitude (Mmax=6.5) 
in keeping with the UK’s national seismic hazard map; a more in-depth review of Mmax in this 
context was beyond the scope of this project.  
After model calibration, we performed retrospective forecasting experiments, in which we 
provided the catalogue as input to the model and simulated seismicity repeatedly (at least 1,000 
times) for each successive time period over the entire period of operations of PNR-1z. We 
performed multiple experiments to investigate the effect of two different magnitude thresholds 
(Mcut=-1 and Mcut=-1.5) and the updating frequency (daily and at the beginning of each stage; 
hourly and 15 minutes after beginning of each stage). The forecasts consist of the full statistical 
distribution of the number of events over each forecast period along with the simulated magnitude 
distribution. These distributions can be simplified to means, medians and 95% predictive intervals.  
The aggregate frequency-magnitude distribution of the simulated seismicity matches the observed 
microseismicity relatively well. According to the model, the expected occurrence of events with 
magnitude between 3.0-6.5 Mw is statistically very rare: only 1 out of 1,000 simulations produced 
seismic events of such magnitude (a magnitude 3 event). In other words, a Gutenberg-Richter 
distribution with b-value of 1.5 and a tectonic maximum magnitude of 6.5 is consistent with the 
data, even if only one ML1.5 was observed. By the same arguments, a broad range of other 
maximum magnitudes – both lower and higher than M6.5 – are also consistent with the data. The 
present approach provides little constraint on this critical parameter.   
The performance of the model forecasts of both the total number of events during operations and 
during the successive forecast periods was mixed, with some clear successes and some failures. 
First, we observed that forecasts that were more frequently updated performed better, because they 
used information about the early seismic response to injections and could adapt. This is in keeping 
with operational statistical models of natural seismicity worldwide (e.g. Marzocchi et al., 2016) 
where ETAS models may provide independent quantifiable outputs that aid expert advice for 
decision-making purposes during earthquake crises. 
Second, the model frequently anticipated the number of seismic events in periods of low to 
moderate seismicity, but systematically underpredicted when the rate of events during stages was 
particularly high. The model also underestimated the total number of events over the period of 
operations. The best performing model, the hourly-ETAS, is rejected in 4% of the time intervals 
within the entire operational period with the majority of rejection instances corresponding to high 
observed rates. Nonetheless, the model captured many features of the induced seismicity such as 
clustering, often tracking the evolution comparatively well. Therefore, the present statistical model 
may present a useful forecasting tool, especially after suitable modification.  
We compared the PNR-1z seismicity patterns with those the model was intended to capture. The 
microseismicity shows clear evidence of temporal clustering, which is often ascribed to triggering 
and event-to-event interaction. The model captured this feature well, and it seems to be more 
prominent during quieter stages, between stages and during the pause in operations in October 
2018. We suspect that during these times the dominant seismicity generating mechanism was 
event-to-event triggering. This describes a critically-stressed faulting process in agreement with 
the findings of Townend and Zoback (2000). The latter authors, after analysing deep drilling and 
induced seismicity experiments at several locations worldwide, conclude that the crust remains 
always in a critical state requiring only small system perturbations to drive fault stability over the 
cusp of failure even in regions of low long-term intraplate strain rates.  
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On the other hand, some stages generated high rates of events that were less obviously clustered. 
This suggests a different dominant mechanism in which events occur independently of each other. 
A likely physical mechanism is the pore pressure change associated with injections that reduces 
the effective normal stress and can lead to seismic slip. While the model expects one constant rate 
of spontaneous events, it currently struggles to model the variability of the high rates and their 
temporary nature. This opens a promising path for future model development and improvement 
by modulating the model’s background rate with operational parameters.  
Further research is critical to improving the predictive power of the model. Testing the model out-
of-sample on a new, independent dataset such as the PNR-2 dataset would provide a better 
evaluation of its skill than testing it on the dataset that it was calibrated on. In addition, embedding 
several physical mechanisms of seismicity linked with operational parameters is a promising 
scientific path towards improved operational probabilistic forecasts. 
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