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Foreword 
This report is the published product of a study by the British Geological Survey (BGS) and 
Avonbank Geophysics Ltd that was commissioned by the Oil and Gas Authority (OGA) to 
research the feasibility of statistically forecasting the microseismicity observed during and after 
unconventional shale gas development in 2018/2019 by Cuadrilla Resources at its Preston New 
Road site near Blackpool, UK. The present study extends an earlier commissioned report by the 
same authors (Mancini et al., 2019), in which we used the 2018 data to calibrate a standard 
statistical forecasting model (the so-called ETAS model) and assessed its predictive skill. This 
report extends this work by (1) including the 2019 data, (2) testing basic relationships between 
operational (pumping) parameters and injection-induced seismicity, (3) improving the ETAS 
model formulation to account for periods of injection-induced seismicity, and (4) cross-validating 
the new model, developed using 2018 data, on the 2019 data.  
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Plain Language Summary 
The present authors were commissioned by the Oil and Gas Authority (OGA) to investigate the 
efficiency of statistically forecasting the microseismicity observed during and after unconventional 
shale gas development in 2018 and 2019 by Cuadrilla Resources at its Preston New Road site near 
Blackpool, UK. The scope of the research was limited by the available time and resources, and we 
focussed on the following: (i) assessing the relationship between the induced seismicity and 
operational parameters (namely total injected volume and fluid injection rate), (ii) modifying a 
popular statistical model of clustered tectonic seismicity to account for injection-induced 
seismicity, (iii) generating and evaluating probabilistic forecasts of the variable seismicity rate and 
magnitude distributions as simulated by the model, including cross-validation tests in which we 
calibrated the model with 2018 data and tested it out-of-sample with 2019 data, and (iv) assessing 
the processes not (yet) well captured by the model. Our findings can be summarised as follows.  
As we reported previously (Mancini et al., 2019), the microseismic datasets now available from 
hydraulic fracturing operations in the PNR-1z and PNR-2 well at Preston New Road in 2018 and 
2019, respectively, represent globally unique opportunities for fundamental research into 
processes leading to induced seismicity. Insights from the analysis and modelling of these data 
will eventually contribute to improved operations and seismic risk mitigation strategies. Because 
the downhole moment magnitudes of both PNR wells are known to be affected by several issues, 
we made pragmatic choices to obtain a more complete and representative catalogue for the 
analysis. Pending a re-estimation of moment magnitudes and associated errors, our conclusions 
should be treated as preliminary.  
The relationship between operational parameters and the seismic response of the geological 
medium to hydraulic fracturing is complicated and non-unique. Prior studies mostly concerned 
with waste-water injection have linked seismic moment release to injected volume. In the case of 
PNR, the released moment per unit injected volume varies dramatically between the wells and also 
between neighbouring hydraulic fracturing stages in the same well. We find that neither PNR well 
violates a popular upper bound for the moment release for a given injected volume (the so-called 
McGarr relationship), but the observed magnitude distribution is also consistent with a much 
higher bound thought to apply in the UK’s tectonic setting. The relationship between earthquake 
counts and injected volume is also non-unique and variable, but the variability is smaller than in 
the case of seismic moment release. We observe no obvious temporal trend of the seismic response 
with time. Despite the scatter in the relationship between earthquake count and injected volume, 
we find that increased seismicity rates tend to be associated with greater volumes (although large 
volumes can also generate little seismic response), while smaller volumes are associated with 
lower seismic rates.  
Motivated by this finding, we modify a model used for forecasting tectonic clustered seismicity, 
the Epidemic Type Aftershock Sequence (ETAS) model. Specifically, our modification to the 
standard ETAS formulation involves a background seismicity rate that is proportional to the 
injection rate and that simulates the external ‘forcing rate’ due to the pumping of pressurised fluid. 
We estimate both well-specific and sleeve-specific constants of proportionality between seismicity 
and injection rate from both wells. Using ETAS parameters previously obtained from PNR-1z, we 
conduct multiple probabilistic forecast experiments on both PNR-1z and PNR-2 to assess the 
predictive skill of this modified ETAS model class. 
We find that the modified ETAS model provides better earthquake rate forecasts than the standard 
model. In particular, the modified ETAS model can capture high rates due to injection periods. 
This is based on the assumption that the background and injection rates are correlated, that the 
injection rate is known in advance and that either the well-specific average seismic response or the 
sleeve-specific seismic response is known. These are best-case scenarios for forecasting, but they 
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enable the estimation of a constant of proportionality between the background earthquake rate and 
the injection rate using real-time data. 
We also conduct an out-of-sample forecast experiment, in which the modified ETAS model is 
calibrated on PNR-1z, applied and then evaluated using PNR-2 data. While the model does not 
perform as well as the PNR-2-specific models, as expected, its estimates are substantially more 
informative than the standard model, even in periods of high rates. This provides evidence that 
injection-rate driven ETAS models can contribute to useful probabilistic forecasts in future shale 
gas developments. 
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1 Introduction 
Seismicity induced by fluid injections is a growing concern. Many countries are witnessing an 
increased development of subsurface geo-energy reservoirs, including unconventional shale gas 
development, enhanced geothermal energy systems, wastewater injection, or underground storage 
of liquid carbon (e.g., Ellsworth, 2013; Keranen and Weingarten, 2018). These activities promote 
seismicity in previously aseismic regions or increase existing seismic rates. In recent years, 
induced seismicity in the US and South Korea, for example, has led to significant damages, losses 
and casualties (Ellsworth et al., 2019; Lee et al., 2019).  

The earthquake potential due to subsurface fluid injections remains poorly understood (e.g., 
Keranen and Weingarten, 2018). Some studies, mostly concerned with seismicity induced by 
wastewater injection, have argued that the maximum magnitude of induced earthquakes is limited 
by the injected volume (McGarr 2014). Specifically, McGarr (2014) predicted that the maximum 
seismic moment increases linearly with the injected volume at a rate equal to the shear modulus 
whereas others, presented clear evidence that this limit does not hold ubiquitously (e.g., Lee et al., 
2019), and that maximum magnitudes are consistent with sampling from an unbounded 
Gutenberg-Richter distribution (Van der Elst et al., 2016). Moreover, a substantial fraction of 
wastewater injection and hydraulic fracturing wells in the US appear to be aseismic, at least with 
current detection capabilities, while other wells spawn seismic events (e.g., Walsh and Zoback, 
2016). The factors that control the seismic response to fluid injection remain largely unknown 
although several hypotheses are now under investigation. 

Statistical models of seismicity have shown some promise in capturing the range of seismic 
responses to fluid injections. Hainzl and Ogata (2005) concluded that fluid-driven seismicity could 
be separated from ‘regular’ seismicity dominated by earthquake triggering. Elasto-static Coulomb 
stress changes are widely believed to be a dominant mechanism for earthquake triggering (e.g. 
Richards-Dinger et al., 2010). Hainzl and Ogata (2005) employed a frequently used short-term 
clustering model, known as the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 
1988). They introduced temporal variations in the background rate, which is otherwise commonly 
assumed to be constant and due to slow tectonic loading in the case of natural seismicity. 
Bachmann et al. (2011) modelled the seismicity induced in Basel, (Switzerland) during and after 
the stimulation of a geothermal energy reservoir. Amongst the several statistical models they 
developed, an ETAS model with a background rate proportional to the flow rate at the well 
performed best. Mena et al. (2013) developed a multi-model forecast of the Basel seismicity using 
a logic-tree approach, including the modified ETAS model, a simpler clustered seismicity model 
and the seismogenic index model by Shapiro et al. (2010). Mena et al. (2013) concluded that 
unacceptable levels of seismicity could have been forecast several days before the onset of felt 
seismicity with the prescribed injection plans.  

Although physics-based models of injection-induced seismicity have also shown promise, they 
require lots of information about the subsurface (e.g., Gaucher et al., 2015) and their continuous 
update under real-time conditions is not trivial. Physics-based models often include the effects of 
fluid flow and the reduction of effective stress, requiring information about the diffusion of pore 
pressure complicated by non-linear permeability dependencies and unknown hydraulic 
connections along poorly constrained fractures. These models appear to work better at larger scale 
when pore pressure diffusion is dominant (e.g., Langenbruch et al., 2018) but appear more difficult 
to apply in cases of hydraulic fracturing induced seismicity.  



   

 

 2 

In the UK, unconventional shale gas development by Cuadrilla Ltd. induced seismicity during two 
well treatments at Preston New Road, Lancashire, namely PNR-1z in 2018, and PNR-2 in 2019 
(Clarke et al., 2019). The induced microseismicity datasets and operational parameters of injected 
volume and injection rates offered us unique opportunities to assess the relationship between 
operational parameters and induced seismicity, develop statistical forecast models and conduct 
probabilistic forecasting experiments that determine the models’ predictive skills.  

In our earlier report of the statistical modelling and forecasting of the PNR-1z seismicity, Mancini 
et al. (2019) concluded the following: (i) the ETAS model parameters estimated from the PNR-1z 
data present an absence of magnitude-dependence of clustering, possibly due to the intense periods 
of induced seismicity during phases of injection, (ii)  the model fit the seismic rate relatively well, 
(iii) the forecast model presented mixed performance during our experiment, performing well 
between injection periods and during the long pause of operations but failing to capture the high 
seismic rates during injection periods.  

In this study, our goal is to develop those probabilistic seismicity forecasting tools that can help in 
real-time decision making and risk mitigation techniques. To that end, we develop improved ETAS 
models that can provide useful probabilistic seismicity forecasts. To guide model development, 
we first retrospectively investigate the relationship between (i) released seismic moment and 
injected volume, and (ii) seismicity and injection rates. We find that these relationships are 
complex, nonlinear and non-unique, but that seismicity generally increases with injection rate.  

We then modify the standard ETAS model by introducing a background rate proportional to the 
injection rate, following the approach of Bachmann et al. (2011), but here applied in the context 
of hydraulic fracturing rather than enhanced geothermal systems. We calibrate the constant of 
proportionality by examining seismicity rate during the periods of injection. Using this modified 
model, as well as the standard ETAS model by Mancini et al. (2019) as a benchmark, we next 
conduct several seismicity forecasting experiments of the PNR-1z and PNR2 seismicity. The 
forecast evaluation reveals an improvement of the predictive skills of the new modified model 
class over the standard version.  

2 Methods 
2.1 MAXIMUM SEISMIC MOMENT RELEASE 

 

McGarr (2014) proposed that the seismic moment released as a result of fluid injection is limited 
by the injection volume ∆𝑉 multiplied by the shear modulus 𝐺, namely:  

 

𝑀' = 𝐺∆𝑉 (1) 
 

Importantly, this relationship establishes an upper limit rather than prescribing an exact 
relationship. For example, a significant fraction of potential seismic moment may be released 
aseismically (McGarr and Barbour, 2018).  

The validity of the McGarr (2014) relationship has been widely debated. Keranen and Weingarten 
(2018) argued that counterexamples exist in which the seismic moment release far exceeded the 
expected value given the injection volume. These include, amongst others, the wastewater-
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injection induced Mw5.0 Fairview, Oklahoma, earthquake, as well as several earthquakes in 
Canada (Atkinson et al., 2016).  

A modified version of the McGarr (2014) relationship was proposed by Shapiro et al. (2010) and 
Halo et al. (2014). In their version, the relationship between the released seismic moment and 
injected volume is characterised by a constant of proportionality, named the seismogenic index, 
which reflects the spatially and temporally variable seismic response. The index can be continually 
calibrated on real-time seismicity and then used to forecast the maximum magnitude over a 
relatively short forecast horizon. Verdon and Budge (2018) developed such forecasts in the context 
of hydraulic fracturing induced seismicity in the Horn River Basin in Canada, while Clarke et al. 
(2019) provided maximum magnitude forecasts during the PNR-1z treatment.  

A different view was provided by Van der Elst et al. (2016). They argued that the maximum 
magnitudes observed in different fluid injection operations were consistent with those expected to 
occur if magnitudes were sampled randomly from an untruncated Gutenberg-Richter law after 
allowing for variations in the absolute rate (i.e. the a-value).  

In the context of this debate, we wish to assess the McGarr (2014) relationship with the data from 
the two PNR wells. Because McGarr only specified an upper limit, a violation of the relationship 
would constitute strong (additional) evidence against the hypothesis. Observations below the limit, 
on the other hand, can be explained by several mechanisms, including a lack of a maximum 
moment (Van der Elst et al., 2016), and therefore would not constitute strong evidence to support 
the hypothesis.  

2.2 RELATIONSHIP BETWEEN SEISMICITY RATE AND INJECTION RATE 
Apart from the McGarr (2014) relationship between maximum moment release and injected 
volume, many operational parameters and other factors have been proposed as important controls 
on induced seismicity, including injection volume, injection rate, wellhead injection pressure, 
injection depth and injection into proximity of crystalline basement. Weingarten et al. (2015) 
assessed the role these factors play in the generation of wastewater-injection induced seismicity in 
the Central US and concluded that high injection rates are the most likely decisive triggering factor.  
While evidence appears strong that injection rate is a dominant controlling factor, we require a 
quantitative relationship to model and forecast seismicity. Bachmann et al. (2011), Mena et al. 
(2013) and others assumed a linear relationship between injection rate and seismicity with a 
constant of proportionality independent of time but variable between operations.  
Here, we assess the relationship between injection rate and seismicity rate in detail using the PNR 
events and high-resolution injection rates. We seek to probe the validity of a linear proportionality 
between the two observables. We investigate (i) the extent to which seismicity is determined 
uniquely by injection rate, (ii) whether a linear relationship is appropriate, and (iii) the variability 
of the constant of proportionality between wells and amongst sleeves. While the results below 
show considerable complexity, non-uniqueness and temporal variability in the relationship 
between injection rate and seismicity, we find that the simple linear parameterisation captures the 
first order effects of hydraulic fracturing and can thus be used to force the background rate of the 
ETAS model for the purpose of improved forecasts relative to a standard ETAS model.  
 

2.3 THE STANDARD ETAS MODEL 
The ETAS seismicity corresponds to a point process with a stochastic spatiotemporal branching 
evolution, where each earthquake triggers its own offspring events, whose numbers depend on the 
parent’s magnitude and follow an Omori law decay in time (Ogata, 1988, 1998). In the ETAS 
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model, triggered earthquakes can have a larger magnitude than their parent event. The total 
seismicity rate λ (or “conditional intensity”) of the temporal ETAS model is defined as:  

 

𝜆(𝑡	|	𝐻1) = 𝜇 + 4 𝑔(𝑡 −
7:19:1

𝑡7;𝑀7), (2) 

 

where	µ is the background rate, usually assumed to be time-independent, H@ is the history (tB < t) 
of all preceding earthquakes occurring at times tB. The triggering function is expressed by 
empirical relations, according to the form of Ogata (1998): 
 

𝑔(𝑡;𝑀) = 𝐾𝑒F(GHGIJK) ∙ 𝑐NHO(𝑡 + 𝑐)HN(𝑝 − 1), (3) 

 
with a normalised temporal distribution as the second term on the right-hand-side, respectively. 
The parameter K regulates the short-term aftershock productivity by a parent event with magnitude 
M equal or above a minimum triggering magnitude (MTU@); 𝛼 establishes the efficiency of 
earthquakes in triggering aftershocks as a function of magnitude. The second term on the right-
hand side of equation (3) is the modified Omori law (Utsu, 1961) describing the distribution of 
triggered earthquakes in time in terms of a power law decay with exponent p and a short-term 
constant c.  
We estimate the ETAS parameters by means of the maximum likelihood estimation (MLE) 
approach, with which we obtain the set of parameters that, given the observations (i.e. a seismicity 
catalogue with N events), maximise the following log-likelihood function (Zhuang et al., 2002):  

 

𝑙𝑜𝑔 𝐿(𝜇, 𝐾, 𝑐, 𝑝, 𝛼) =4𝑙𝑜𝑔 𝜆	(𝑡7	|	𝐻1) − Z 𝜆(𝑡)	𝑑𝑡

\]

\̂

_

7`O

, (4) 

 
where T0 and T1 represent the start and end times for fitting. We use the R package PtProc by Harte 
(2010) to perform the estimation.  
The ETAS model considers the combination of triggering effects from background and evolving 
seismicity during the learning phase and within each forecast time period for the next forecast 
window. To improve the ETAS model within the same time interval, and before the next model 
update, we simulate these future events. According to the simulation algorithm (Zhuang and 
Touati, 2015): (a) the number of future events is Poisson distributed with a mean rate controlled 
by the productivity law, (b) the occurrence times are sampled from the modified Omori law, (c) 
magnitudes are drawn from a Gutenberg-Richter distribution with b-value truncated at Mbcd. In 
tectonic seismicity we take Mbcd consistent with historical seismicity and modern regional strain 
rates (Rong et al., 2016). For higher generations of triggered events, the simulation process is 
repeated until the number of potential parent shocks eventually dies out.  
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2.4 MODIFIED ETAS MODEL FOR INJECTION INDUCED SEISMICITY 
In this study, we modify the ETAS model to couple the background rate to the time-dependent 
fluid injection rate 𝐼f(𝑡) according to:  

𝜆(𝑡	|	𝐻1) = 𝜇(𝐼f) + 4 𝑔(𝑡 −
7:19:1

𝑡7;𝑀7), (5) 

 

where the background rate 𝜇(𝐼f) is assumed to be linearly related to the injection rate via a constant 
of proportionality 𝑐h:  

𝜇(𝐼f) = 𝑐h	𝐼f(𝑡). (6) 

 
In Section 5, we assess the validity of this linear relationship qualitatively with the observed 
seismicity and injection rates from the two PNR wells. Below, we calculate and compare the bulk 
(average) values of 𝑐h across the two wells. We also assess the temporal stability of the constant 
by calculating the specific values for each injection period.  
 

2.5 STATISTICAL EVALUATION OF FORECAST MODELS 
To assess the robustness of any forecast model, it must be evaluated against data – ideally against 
independent data and prospectively, as conducted by the global Collaboratory for the Study of 
Earthquake Predictability (CSEP; Michael and Werner, 2018). The CSEP community provides 
rigorous measures for the evaluation of forecasts (i) to flag discrepancies between data and model 
forecasts (lack of consistency) and (ii) to measure relative performance between models (model 
ranking).  
These tests assess consistency with observations, but whether forecasts are informative and useful 
to end-users depends on the specific context of the decision-making process the forecasts are meant 
to support. Moreover, since each test is formulated to assesses one or more specific features of the 
forecast, model rankings can differ when different performance evaluation metric are considered. 
As a result, no single evaluation measure will characterise the utility of a forecast for all 
stakeholders. Because of the limited scope of the present study, we focus here on a statistical 
evaluation of consistency. The consistency tests presented in this report assess whether 
observations fall into the range of model simulations, e.g. whether the observed number of 
earthquakes per hour is within the 95% range of the model forecast.  
A number of statistical tests (Schorlemmer et al., 2007; Marzocchi et al., 2012 and references 
therein) are implemented within CSEP. Here, we employ the modified N-test (Zechar et al., 2010) 
to compare the total number of observed vs. forecasted earthquakes over a precise time horizon. 
The N-test asks the question: is the observed number of earthquakes consistent with the range of 
model simulations? If the observed number falls into the tails of the modelled distribution, this 
identifies a potentially significant discrepancy between model and data.  
The N-test is a two-sided metrics that uses two scores under the assumption that the tested forecast 
is correct: δ1 to assess the probability of observing at least 𝑁lmn earthquakes given a forecast of 
	𝑁hlfo, and δ2 to evaluate the probability of observing at most 𝑁lmn earthquakes given 	𝑁hlfo. To 
compute these two quantiles, we use a cumulative mass function F that is constructed from the 
model simulations: 
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𝛿O = 1 − 𝐹 r(𝑁lmn − 1)	s	𝑁hlfot , (7) 

𝛿v = 𝐹w𝑁lmn	x	𝑁hlfoy. (8) 

 
We then evaluate the N-test by applying a one-sided significance test and we ‘reject’ the forecast 
if either 𝛿O(𝑡) < 𝛼 or 𝛿v(𝑡) < 𝛼, where 𝛼 = 0.025 is the effective significance value (Zechar et al., 
2010), such that observations that fall outside the 95% range of the model simulations are flagged 
as indicating a potentially important discrepancy between model and data. Scientific or practical 
significance of the discrepancy will depend on the context and usage. “Rejected” forecasts may 
thus still be good enough to be useful.  
Below, we display the results of the N-tests visually – rather than as quantiles scores – by showing 
the 95% model range and the observed number as either within the range (in green to indicate test 
was passed) or outside the model range (in red to indicate a failed N-test and a potentially important 
discrepancy).  
An additional evaluation metric that we use here is the root mean square (RMS) error. We use the 
RMS error to track the evolution of the cumulative absolute difference between the observed and 
expected seismicity rates. This metric does not consider the whole range of ETAS forecasts but 
solely measures the typical discrepancy between the mean forecast and the observation. The RMS 
error is defined as: 

𝑅𝑀𝑆 = }∑ (𝑁hlfo
(�) − 𝑁lmn

(�) )v\
�`O

𝑇 , (9) 

 

where 𝑇 indicates the number of forecast windows indexed by 𝑗, 𝑁hlfo
(�)  is the mean expected 

number from the ETAS simulations, and 𝑁lmn
(�)  is the observed number in the forecast window.  

Other metrics that account for the entire model distribution rather than just the mean are possible 
and should be pursued in the future. For example, probabilistic scores such as the likelihood score 
will also capture the range or uncertainty of the model forecast, rather than focus solely on the 
mean.  

3 Summary of Operations 
The horizontal PNR-2 well runs roughly parallel to the PNR-1z well and is offset by approximately 
200 m. Similar to PNR-1z, a sliding-sleeve completion method was used, with up to 45 possible 
hydraulic fracture stages with a planned maximum injected volume of 765 m3 in any single stage. 
Operations started on 15 August 2019, but only seven of these stages were completed as operations 
were suspended following a magnitude of 2.9 ML earthquake on 26 August at 07:30 UTC, almost 
72 hours after a hydraulic fracture stage on 23 August, that was strongly felt locally at distances 
of up to a few kilometers from the epicenter. For information regarding the PNR-1z operations, 
we refer the reader to Clarke et al. (2019) and Mancini et al. (2019).  
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4 Data 
4.1 OVERVIEW 
Seismicity during operations in the PNR-2 well was recorded by a downhole geophone array in 
the adjacent PNR-1z well. Geophone and sleeve locations were not available at the time of writing. 
Our understanding is that the downhole instruments in PNR-1z were different to those used in 
PNR-2. The PNR-1z array (to measure PNR-2 induced seismicity) consisted of 12 geophones, ten 
of which were 15 Hz instruments while two were 3 Hz accelerometers.  
The geophones recorded continuously from the onset of operations on 15 August 2019, detecting 
over 55,000 microseismic events. The event catalogue supplied for the project consisted of origin 
times, locations and magnitudes of the events as determined by a geophysical processing 
contractor. No information was available on the method used to locate individual events or the 
location uncertainties. Typical location uncertainties for downhole microseismic data are around 
10-20 m in depth and slightly larger uncertainties in horizontal location. Similarly, although the 
magnitudes are reported as moment magnitudes (Mw), no information was available on how this 
was determined or the magnitude uncertainty.  
To compare against and complement the downhole catalogue, we accessed source parameters 
recorded by the combined surface network of the BGS and the operator (Baptie and Luckett, 2019). 
This network detected only larger events with magnitudes reported as local magnitudes (ML). 
The operator also provided us the pumping data, including fluid injection rates of high temporal 
resolution (minute by minute).  

4.2 DATA QUALITY AND CATALOGUE PREPARATION 
The PNR-2 downhole catalogue suffers from brief but critical data gaps, resulting in a loss of 
recorded seismic events, including the largest event, a ML2.9 recorded on 26 August 2019, and 
presumably some of its aftershocks. To address this issue we filled these gaps with available events 
recorded during these time periods by the surface catalogue. These events constitute only the 
largest events that occurred during the gaps, with smaller events apparently irretrievably lost 
during data transfer and storage.  
Both downhole catalogues of moment magnitudes are subject to uncertainties and biases. 
Corrected moment magnitudes in both downhole catalogues and their relation to the surface local 
magnitudes is the aim of an ongoing study by Baptie et al. (2020). For the purpose of this study, 
we adopted a pragmatic approach to prepare improved moment magnitude catalogues, as follows.   
Mancini et al. (2019) described how the PNR-1z moment magnitudes were corrected at the upper 
end because of waveform clipping. According to preliminary analyses by Baptie et al. (2020), the 
PNR-2 downhole moment magnitudes are underestimated by 0.15 magnitude units. We therefore 
added this correction factor to each moment magnitude estimation. In addition, we converted the 
surface MLs that we added to fill the data gaps using the conversion relationship developed by 
QCon for Cuadrilla’s hydraulic fracturing plan (Cuadrilla Resources Inc, 2019).  

 

4.3 EXPLORATORY DATA ANALYSIS 
To have a first order look at the PNR-2 microseismicity dataset, we analyse the seismicity response 
due to the hydraulic stimulation during each stage of operations. When we plot the occurrence 
times of earthquakes above magnitude -1.5, we do not observe a simple seismic response 
proportional to fluid injection rates. As an example, in Figure 1 we report the injection rate trends 
for stages 2 and 7 and compare them to the observed seismicity; while in stage 2 the seismicity 
rate almost immediately ramps up following the sudden increase in injection rate (Figure 1a-b), in 
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stage 7 we observe a few minutes delay in the onset of increased seismicity (Figure 1d-e). The 
selected examples also show that during short, unsteady injection episodes, the seismicity rate 
remains mostly unchanged. Such variable behaviour, with delays and rate changes, suggests a 
complex physical mechanism for induced earthquake nucleation where the enhanced injection rate, 
although being evidently important, is not the only controlling factor.  
To further assess the character of seismicity patterns and temporal clustering during injection 
periods, we use the inter-event times as a useful diagnostic tool (e.g. Hainzl et al., 2006, Touati et 
al. 2009). Inter-event times simply indicate the time between two successive events and, depending 
on their distribution within the period of interest, can provide insight into the seismicity patterns 
and the underlying generating mechanisms. For example, inter-event times between random and 
independent (Poissonian) occurrence times follow an exponential distribution. Meanwhile, 
temporal aftershock clustering according to the Omori law will generate power-law distributed 
inter-event times with a power-law exponent close to the Omori p-value (e.g. Hainzl et al., 2006). 
The inter-event times in ETAS model simulations follow a combination of these two in a 
distribution consisting of three parts: (i) extremely short inter-event times up to a few hours are 
equally likely (a short-term high plateau corresponding to the Omori law up to the constant c-
value), (ii) a mid-term power-law decay due to Omori’s power law that identifies temporal 
clustering, and (iii) a long-term exponential decay that lacks clustering and identifies the 
independent background rate of spontaneous, unclustered earthquakes.  
We find that all inter-event time distributions within injection periods at PNR-2 present a good fit 
with an exponential decay. In particular, Figures 1c and 1f show that we obtain an adequate fit 
regardless of the presence of a delay in the observed seismic response. This result suggests that, 
although we cannot exclude a small portion of clustered seismicity masked by the large quantity 
of externally forced earthquakes, events in these periods are predominantly generated by direct 
stimulation rather than event-to-event triggering. 
These observations (of non-steady rates but approximately exponential inter-event times) also 
holds for the other stages.  We conclude that, a Poisson process of constant rate may capture the 
gross features of the observed seismicity as a first order approximation. This provides some 
confidence that modifying the ETAS model to include a (Poissonian) background driven by the 
injection rate would improve the model over its standard formulation.   
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Figure 1. Relationship between injection rates and observed seismicity patters at PNR-2. 
Panels (a-b) and (d-e) illustrate the seismic rate change in response to heightened injection 
rates for stages 2 and 7, respectively. Bottom panels (c) and (f) show the inter-event times 
distribution during the injection periods for the two selected stages.  

 

5 Probing the Relationship between Injection Parameters 
and Induced Seismicity 

5.1 SEISMIC MOMENT RELEASE VERSUS INJECTED VOLUME 
To assess McGarr’s (2014) upper bound on released seismic moment as a function of total injected 
volume, and to place the seismic response at PNR into global context, we calculated the  
cumulative seismic moment (using Mw values and the relationship proposed by Kanamori and 
Brodski, 2004) and total injected volume for operations in each well. Figure 22 shows that neither 
well violates McGarr’s (2014) upper limit. We do not, however, interpret this as strong support 
for the hypothesis: Mancini et al. (2019) showed that the PNR-1z magnitude distribution was also 
consistent with finite sampling from a Gutenberg-Richter law with a conservative tectonic 
maximum magnitude of 6.5, consistent with the view by Van der Elst et al. (2016). Nonetheless, 
Figure 22 places the two PNR wells into global perspective.  
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The two PNR data points on Figure 22 also show dramatic variability in the seismic response 
despite approximately similar injection volumes into two wells less than a few hundred meters 
apart and into the same geological unit. Interestingly, despite less injection into PNR-2, more 
seismic moment was released. This variability suggests that the seismic response in these units 
and the surrounding crust is at least partially determined by local heterogeneities in the pre-existing 
stress field.  

 
Figure 2: Seismic moment release against injected volume of the PNR-1z and PNR-2 wells in 
relation to other fluid injection operations and induced seismicity. Straight line shows the 
McGarr (2014) relationship for the maximum seismic moment release for a given injected 
volume. While PNR data do not violate the McGarr relation, they provide only weak support 
for the limit. The variability of moment release for similar volumes suggests local stress field 
heterogeneities at least partially control the moment release.  

 
Figure 33 shows a more granular view of the seismic moment released during each period of 
injection, revealing a number of interesting first order observations. First, none of the injections 
generated seismic moments that exceeded the McGarr (2014) relation. Second, the relation 
between injected volume and released seismic moment is complicated and non-unique. For 
example, a similar injection volume during injection periods #37b and #32 of PNR-1z generated 
seismic moments that differ by more than an order of magnitude. Third, later injections do not 
obviously generate more moment than earlier sleeves. For example, injections #1 and #37b of 
PNR-1z represent the first and one of the last sleeves, and they receive comparable injection 
volumes, and yet the later injection #37b generates less seismic moment. The large scatter reveals 
a complex and non-unique relation between injected volume and released seismic moment, even 
at the very small scale of neighbouring sleeves.  
Despite the large scatter, Figure 33 provides some evidence that moment release increases with 
injected volume. The least squares linear regressions (in log-space) that we fit to the PNR-1z and 
PNR-2 data both show positive slopes. Neither regression fits the scattered data particularly well, 
but they do indicate an overall positive co-dependency. The difference in slopes is surprising for 
such a small geographical volume of essentially identical geological nature, unless moment release 
is largely controlled by small scale heterogeneities in the conditions that promote seismic failure.  
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Figure 3: Seismic moment (Mw³-1.5) released during individual sleeve-specific injection 
periods against the sleeve-specific injected volumes during PNR-1z (circles) and PNR-2 
(triangles). Colours range from yellow to red for increasing sleeve number and time since 
the start of operations. A number of mini-fracs of the PNR-1z well plot towards the bottom 
left.  

 
To further illustrate the variability of the relationship between moment and volume, we normalise 
the released seismic moment by the injected volume during each injection period (Figure 4: 
Variability of released moment per unit injected volume during (a) PNR-1z and (b) PNR-2. 4). 
The normalised moment release is essentially the sleeve-wise seismogenic index of the Hallo et 
al. (2014) model. PNR-1z displays sleeve-to-sleeve variations over three orders of magnitude and 
shows no increase of seismic susceptibility with increasing sleeve number, i.e. time. This implies 
a substantial a-priori uncertainty of the seismogenic index for any given sleeve. Nonetheless, the 
sleeve-to-sleeve variability quantified here could be used to make probabilistic estimates of the 
maximum moment release accounting for uncertainty in the seismogenic index. The resulting 
uncertainty in the maximum magnitude prediction would correspond to about 2 units of moment 
magnitude.  
Interestingly, PNR-2 displays a relatively stable moment release per unit of injected volume. 
Except for the period #1a, which corresponds to a mini-frac, the seismic susceptibility varies by 
about a factor of five. The normalised seismic moments of PNR-2 are also roughly within the 
range of normalised moments seen during PNR-1z, albeit at the upper end.  
In summary, while the seismic response varies dramatically between sleeves and wells within such 
a small spatial volume, the range of variation appears to also be limited within 105 to 109 Nm/m3, 
at least as observed so far. This is consistent with a non-unique and complex, but broadly positive 
co-dependency between injected volume and released seismic moment.  
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Figure 4: Variability of released moment per unit injected volume during (a) PNR-1z and 
(b) PNR-2.  

 

5.2 SEISMICITY VERSUS INJECTED VOLUME 
Another approach for modelling seismicity induced by fluid injection is to assume that the 
seismicity grows proportionally with injection volume, i.e. that seismic rate is proportional to 
injection rate. This places similar but different assumptions on the relationship between the seismic 
response and anthropogenic forcing than the previously examined hypothesis that seismic moment 
release is proportional to injected volume. In particular, the relationship is less sensitive to the 
dominant contribution to the moment by the largest event.  
In Figure 5: Seismicity rate (M>-1.5) during injection against injected volume by sleeve for PNR-
1z (circles) and PNR-2 (triangles). Colours from yellow to red indicate increasing sleeve number 
(i.e. increasing time). While the seismicity rate can increase with injected volume, the relationship 
is complex and non-unique. 5, we show the number of seismic events greater than moment 
magnitude -1.5 against the injection volume. As before, the data do not show obvious temporal 
trends. Instead they show a complex and non-unique relationship. While few earthquakes occur 
during the small injection volumes during mini-fracs, the number of events does not grow 
uniformly with greater volumes during main stages. For example, injection period #13 of PNR-1z 
has one of the greatest injection volumes across all stages but generates as few seismic events as 
a mini-frac with a tenth of the injection volume. Moreover, despite receiving a similar volume as 
#13 of PNR-1z, injection period #2 of PNR-2 generated over 1,400 events compared with about 
100 for #13 of PNR-1z.  
As in the previous section, we illustrate in Figure 6: Variability of the earthquake count per unit 
injected volume as a function of sleeve for (a) PNR-1z and (b) PNR-2.6 the variability of the 
induced earthquake count by normalising the number by the injected volume, to obtain the 
normalised earthquake count per unit injected volume across the sleeves of the two wells. The 
variability of the seismic response per unit volume between the sleeves and wells is about a factor 
of 10. In this case, however, the seismic responses of some sleeves of PNR-2 (#1b, 2, 3) are greater 
than any of the PNR-1z sleeves, suggesting that the full range of variability has not yet been 
observed.  
In the present and preceding sections, we analysed the variability of the seismic response to the 
fluid injection. Our results show that the relationships between released seismic moment or 
seismicity on one hand, and injected volume on the other hand, are complicated and non-unique. 
Clearly additional factors play a role in determining the seismogenic potential than solely the 



   

 

 13 

external forcing, even across two wells within a few hundred meters or across sleeves separated 
by meters.  
Despite this complexity, we also observe (i) evidence that both released moment and seismic 
counts can increase with injected volume and (ii) the variability of the sleeve- or well-specific 
seismic response is large but appears bounded. These observations motivate us to modify the 
standard ETAS model by forcing its background rate with the injection rate, as proposed by 
Bachmann et al. (2011).  

 
Figure 5: Seismicity rate (M>-1.5) during injection against injected volume by sleeve for 
PNR-1z (circles) and PNR-2 (triangles). Colours from yellow to red indicate increasing sleeve 
number (i.e. increasing time). While the seismicity rate can increase with injected volume, 
the relationship is complex and non-unique.  
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Figure 6: Variability of the earthquake count per unit injected volume as a function of sleeve 
for (a) PNR-1z and (b) PNR-2. 

 

6 Model Calibration and Simulation Framework 
6.1 ETAS MODEL CALIBRATION  
A detailed analysis and forecast of the magnitude distribution is beyond the scope of this report. 
However, we briefly summarise here the observations and ETAS model assumptions on the basis 
of the PNR-1z analysis in our previous report (Mancini et al., 2019).  
The ETAS model assumes that magnitudes of simulated seismic events are identically and 
independently drawn from the exponential Gutenberg-Richter distribution, irrespective of 
location, history or whether events are spontaneous background or triggered events. The 
magnitude distribution requires an upper taper or truncation (Mmax), which we here choose as the 
most likely regional tectonic maximum of 6.5 (Woessner et al., 2015; Mancini et al., 2019) as well 
as a b-value. Mancini et al. (2019) estimated a b-value of 1.27 on the basis of the PNR-1z 
seismicity. Pending finalised moment magnitude estimates of the PNR-2 dataset and an analysis 
of the b-value, we assume the same b-value for modelling the PNR-2 seismicity. Our conclusions 
must be viewed as preliminary until the analysis can be repeated with re-estimated, reliable 
moment magnitudes.  

We use the five ETAS parameters (µ, K, a, c, p) that we presented in the previous report (Mancini 
et al., 2019), obtained by fitting a temporal ETAS model to the PNR-1z microseismicity catalogue 
by means of maximum likelihood (equation 4). In particular, we implement the set of parameters 
inverted by considering a catalogue cut-off magnitude of –1.5, and we use this threshold as the 
minimum triggering magnitude of the ETAS model as well.  

Table 1 summarises the ETAS parameters. 
 

Parameter Value Description 

Mcut -1.5 (fixed) minimum triggering magnitude 

𝜇 5.367 background rate for standard ETAS 

K 0.946 productivity parameter 

𝛼 -0.115 productivity scaling parameter 

c (days) 0.0020 Omori-Utsu c-value 

p 1.757 Omori-Utsu power law decay exponent 

b 1.27 (fixed) Gutenberg-Richter b-value 

n 0.91 branching ratio 

 
Table 1. ETAS parameters used for the simulations, taken from the maximum likelihood 
estimation of PNR-1z seismicity by Mancini et al. (2019) 
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Mancini et al. (2019) reported that these ETAS parameters are very unusual compared to typical 
estimates (e.g., Seif et al., 2017). The small productivity exponent 𝛼 suggests a lack of magnitude-
dependent clustering, which we interpret as an artefact due to the model’s inability to capture the 
periods of intense seismicity during injection stages. A re-estimation of the parameters under the 
modified ETAS formulation was beyond the scope of the present report.  

 
As described in Section 2.4, in the modified ETAS versions we account for an externally driven 
background rate using the approach of Bachmann et al. (2011), where the background rate is 
considered proportional to the flow rate. To calculate the constant of proportionality 𝑐h of equation 
(6), we sample the injection rates and the observed seismicity rates at 1-minute intervals during 
each injection period at PNR-1z (Figure 7) and PNR-2 (Figure 8). Then, we fit the resulting 
distribution by imposing a linear fit following the Bachmann et al. (2011) approach and under the 
assumption that no seismicity is induced when the injection rate is zero. The constant of 
proportionality is the slope of the fitting line. We perform such linear fit (1) for the entire period 
of operations to obtain a bulk 𝑐h in each well to be implemented in ETAS-1 models (Figures 7b 
and 8b) and (2) for individual injection periods to calibrate specific values of the proportionality 
constant (Figures 7a and 8a show an example from two injection periods at PNR-1z and PNR-2, 
respectively). As is evident from the scatter plots below, a simple linear relationship between 
injection rate and observed seismicity rate is an over-simplification of a much more complex 
pattern; however, a broadly positive co-dependency appears to hold. Results from other stages 
show similar patterns.  
In Figures 7c and 8c we also report two examples of how the expected forced earthquake rate 
described as a simple modulation of the injection rates compares to the actually observed number 
of events (grey bars) when (1) 𝑐h values are fitted to the bulk set of injection periods (green lines), 
(2) 𝑐h values are fitted to the specific injection period data (red lines), and (3) when we use the 
bulk PNR-1z 𝑐h constant to modulate the seismic response at PNR-2 (orange line). 
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Figure 7: Linear fitting procedure to estimate the proportionality constants 𝒄𝒇 between 
injection rate and seismicity and their effect on the expected rates. (a) sleeve-specific 𝒄𝒇 fit 
for data specific to the injection period 30b at PNR-1z; (b) bulk 𝒄𝒇 fit when all PNR-1z 
injection periods are considered. Colours in (a) and (b) range from yellow to red for 
increasing time since start of operations. (c) Injection rate driven ETAS background rates 
at injection period 30b vs. the actually observed seismicity rate sampled at 1-minute 
intervals (grey bars); shaded areas represent the uncertainty on the expected seismicity rate 
due to the error on the 𝒄𝒇 fitting procedure. 
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Figure 8: Linear fitting procedure to estimate the 𝒄𝒇 constants and their effect on the 
expected forced rates. (a) sleeve-specific 𝒄𝒇 fit for data specific to the injection period 6b at 
PNR-2; (b) bulk 𝒄𝒇 fit when all PNR-2 injection periods are considered. Colours in (a) and 
(b) range from yellow to red for increasing time since start of operations. (c) Injection rate 
driven ETAS background rates at injection period 6b vs. the actually observed seismicity 
rate sampled at 1-minute intervals (grey bars); shaded areas represent the uncertainty on 
the expected seismicity rate due to the error on the 𝒄𝒇 fitting procedure. 
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6.2 FORECASTS BASED ON ETAS SIMULATIONS 
All of our ETAS models share some common characteristics, such as: (1) the parameters obtained 
on the PNR-1z dataset are used to perform 1000 out-of-sample simulations of synthetic catalogues 
of occurrence times and magnitudes for both PNR-1z and PNR-2 seismicity; (2) ETAS parameters 
remain fixed during the whole forecast horizon; (3) for both PNR-1z and PNR-2, the start of the 
simulations corresponds to the start of the operations; (4) simulations are updated hourly or at the 
beginning of each injection period (whichever comes the sooner). Moreover, each injection period 
represents a single forecast window, under the assumption that the operator knows in advance the 
duration and rate of fluid injection.  
Mancini et al. (2019) developed a standard ETAS model to forecast the induced seismicity at PNR-
1z where the only considered triggering mechanism was the event-to-event interaction (i.e. without 
explicit consideration of the immediate effect of fluid injection) and showed how such a basic 
approach resulted in a mixed forecast performance, with some successes during quieter stages and 
clear failures in periods of high injection rates. We start by testing the same simple forecasting 
method (ETAS-0) on the PNR-2 seismicity. Subsequently, we modify the standard ETAS 
formulation as described in Section 2.4. In particular, for both PNR-1z and PNR-2 we test the 
effectiveness of two modelling strategies:  

• ETAS-1 – We sample the injection rate and the seismicity rate at 1-minute windows within 
all injection periods, then we estimate one average or bulk proportionality constant (𝑐h) to 
model the forced seismicity rates occurring at every injection period through equation (6). 

• ETAS-2 – We apply the above procedure individually to each stage to derive specific 𝑐h 
values for each injection period.  

Further to ETAS-1 and ETAS-2, we develop an additional forecast version (ETAS-3) where we 
use the PNR-1z bulk proportionality constant to model the forced seismicity during injection 
periods at PNR-2. ETAS-3 thus represents a model that provides forecasts for PNR-2 based on a 
model calibration on PNR-1z. As the model is evaluated out of sample, its performance provides 
one perspective into how well the models developed here might perform in new hydraulic 
fracturing operations.   

7 Earthquake Rates Forecasts 
In this section, we present the forecasts in the form of a comparison between observed and 
expected incremental evolution of seismicity. Then, we assess the temporal performance of the 
forecasts using a simple pass/rejection criterion, where a forecast for a time window is accepted if 
the number of observed earthquakes falls within the 95% confidence bounds of the simulated 
seismicity range. Finally, we present a metric to quantify the predictive skills of the proposed 
models based on root mean square errors between the expected and observed numbers. 

7.1 STANDARD ETAS MODEL (ETAS-0) 
In Figures 9 and 10 we present an example of ETAS-0 timeseries for a subset of the operation 
stages at PNR-1z and PNR-2. We selected the representative stages in Figures 9 and 10 to 
encompass the different model performance obtained (over or underprediction) during stages 
characterised by different pumping rates and variable seismicity patterns (e.g. stages including at 
least one injection period, stages including only mini-fracks or an extended period of pause/end of 
operations).  
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The panels show the observed number of M ≥ -1.5 events per hour together with the mean and 
95% confidence interval of the expected ETAS seismicity range. At the start of operations of both 
PNR-1z (Figure 9a) and PNR-2 (Figure 10a), ETAS-0 projects the onset of the expected high-rate 
microseismicity with a 1-hour delay with respect to the observations. This undesired effect is due 
to the lack of M ≥ -1.5 parent earthquakes prior to the earliest forecast time windows. This basic 
model implementation, in which external fluid forcing is not yet considered, severely 
underpredicts the seismicity rates of all the injection periods by 1 to 3 orders of magnitude (e.g. 
Figure 9a,b; Figure 10a,b). However, the model satisfactorily reproduces the number of induced 
events during mini fracking stages at PNR-1z (Figure 9c), the time decay of seismicity that occurs 
after and outside the injection periods (e.g. Figure 9d and Figure 10c), as well as the temporal 
aftershock clustering following the 26 August 2019 Mw 2.8 earthquake at PNR-2 (Figure 10d). 
We note that the 95% confidence bounds of the forecast often encompass the critical value of zero 
events, especially during low-rate periods, meaning that the model predicts at least 2.5% 
probability of no M ≥ -1.5 earthquake occurrence. Such result reveals the intrinsic stochasticity of 
the ETAS model and reflects the lack of forecast specificity. 
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Figure 9: ETAS-0 forecast time series for selected stages at PNR-1z. (a-d) Observed (circles) 
vs. mean expected (blue squares) hourly number of events. The light blue bars represent the 
95% confidence bounds of the ETAS simulations. The colour of the circles indicates whether 
the observed number of events per hourly time bin falls within (green) or outside (red) the 
ETAS confidence interval. 
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7.2 MODIFIED ETAS MODELS 
Here, we assess the influence of considering an external forcing rate in the ETAS forecasts as 
described in Section 2.4 and following the specific modelling assumptions presented in Section 
6.3. Hence, from Figure 11 to Figure 15 we extrapolate a selection of stages where at least one 
injection period occurs, as the implemented ETAS modifications do not exert any effect on the 
pre/post injection time windows.   
Figure 11 and Figure 12 show how ETAS-1 models result in significantly increased expected rates 
during injection periods, from 2 to 3 orders of magnitudes higher than ETAS-0, providing a 
remarkably improved visual correlation with the observations. However, their performance related 

Figure 10: Same as Figure 9 but for a subset of selected stages of operations at PNR-2. 
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to those forecast windows characterised by high observed rates (that generally correspond to the 
fluid injection periods) is highly variable, featuring some successes (e.g. Figure 11c for PNR-1z) 
and some failures due to both overpredictions (Figure 11b, 12d) and underpredictions (e.g. Figure 
11a, 12a-c). Such mixed performance in reproducing the seismicity peaks is likely due to the fact 
that a single proportionality constant for the whole dataset is not sufficiently representative of the 
much more complex relationships between injection rate and seismicity rate that are likely to hold 
at a finer scale (stage-wise or even within each single injection period).  
 

 

Figure 11: ETAS-1 forecast time series for selected stages at PNR-1z. (a-d) Observed (circles) 
vs. mean expected (blue squares) hourly number of events. The light blue bars represent the 
95% confidence bounds of the ETAS simulations. The colour of the circles indicates whether 
the observed number of events per hourly time bin falls within (green) or outside (red) the 
ETAS confidence interval. 
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In Figure 13 and Figure 14 we isolate the same stages and show how the forecast changes during 
the highly active time windows when we use a proportionality constant specific to each injection 
period. Results show that ETAS-2 mostly compensates for the over/under estimation of the 
seismicity rates obtained by ETAS-1 during the injection periods. In particular, we observe a much 
more reliable forecast for high observed rates at PNR-1z (Figure 13 a-c). While the performance 
improvements related to PNR-1z are notable, those for PNR-2 are mostly limited to the early 
injection periods (Figure 14a,b) with later stages presenting underestimations of up to 200-300 
events that result in model rejections (Figure 14 c,d). This is not surprising, given that the strong 
variability of the seismicity response even under the same values of injection rate often makes the 
calibration of a period-specific proportionality constant inaccurate under the simplistic assumption 
of a linear fit. However, the overall comparison between ETAS-1 and ETAS-2 illustrates how the 

Figure 12: Same as Figure 11 but for a subset of selected stages of operations at PNR-2. 
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effects of such variability are better captured when we parameterise the modified ETAS model 
using stage-wise pumping data. 

 

 

Figure 13: ETAS-2 forecast time series for selected stages at PNR-1z. (a-d) Observed (circles) 
vs. mean expected (blue squares) hourly number of events. The light blue bars represent the 
95% confidence bounds of the ETAS simulations. The colour of the circles indicates whether 
the observed number of events per hourly time bin falls within (green) or outside (red) the 
ETAS confidence interval. 
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Figure 14: Same as Figure 13 but for a subset of selected stages of operations at PNR-2. 
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Finally, in ETAS-3 we test the model performance when we use the model calibrated to the PNR-
1z data and forecast the injection-induced seismicity at PNR-2. Results show that although ETAS-
3 underpredicts rates during many injection periods (Figure 15), it gets much closer to the 
observations than the standard ETAS-0 model (Figure 10). On one hand, this result indicates the 
importance of calibrating the modified ETAS model on well-specific pumping data to obtain more 
reliable results, but it also highlights how crucial it is to include injection data in the ETAS 
parameterisation applied to HF operations.  
 

Figure 15: ETAS-3 forecast time series for selected stages at PNR-1z. (a-d) Observed (circles) 
vs. mean expected (blue squares) hourly number of events. The light blue bars represent the 
95% confidence bounds of the ETAS simulations. The colour of the circles indicates whether 
the observed number of events per hourly time bin falls within (green) or outside (red) the 
ETAS confidence interval. 
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7.3 PERFORMANCE EVALUATION 
Here, we compare the capability of the three proposed ETAS models to reproduce the induced 
events at PNR-1z and PNR-2 during periods of high, moderate or low seismic productivity. For 
simplicity, we denote a forecast for a specific time window as “accepted” if the observations fall 
within the 95% confidence bounds of the ETAS simulations, otherwise we mark it as “rejected”. 
More appropriately, “rejected” forecasts highlight a potential discrepancy between data and model, 
while “accepted” forecasts cannot be rejected.  
Figures 16 and 17 show that the vast majority of the forecasts for time windows characterised by 
low to moderate observed seismicity (i.e. between 0 and 50 M ≥ -1.5 earthquakes) cannot be 
rejected even in the standard ETAS-0 version. Most of these relatively quiet periods represent the 
activity decay following an injection period where the seismicity appears mostly governed by 
those event-to-event interactions which are usually well captured by the standard ETAS 
formulation.  
On the other hand, ETAS-0 is frequently surprised by moderate to large numbers of events when 
it expected very few earthquakes. Such model behaviour results from the lack of coupling between 
the background rate and the injection parameters; in other words, the model cannot anticipate the 
enhanced induced seismicity without any information on the external forcing due to fluid injection. 
The expected rates during the injection periods increase only when we introduce an additional 
external forcing in ETAS-1 and ETAS-2. We find that ETAS-2 presents the best predictive skills 
for moderate (150-250 events) to high (> 350 events) seismicity windows, thanks to the stage-
specific model parameterisation. On the other hand, ETAS-1 forecasts, with its bulk 
proportionality constant between injection rates and seismicity rates, struggle in time windows 
with more than 200 observed events.  
ETAS-2 features a striking performance improvement for PNR-1z (Figure 16c) and is able to 
reproduce the highest observed seismicity rates at PNR-2 (Figure 17c). 
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Figure 16: Observed vs. expected number of events for the three ETAS versions tested on PNR-
1z. The red circles indicate forecast rejection, while green ones indicate that the model 
adequately forecasts the number of events. 
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7.3.1 Root mean square (RMS) prediction errors  
In Figure 18 we show the RMS error of the proposed models as a function of time. In the case of 
PNR-1z (Figure 18a), mean ETAS-2 simulations perform best, with RMS errors systematically 
lower than the other two competing models. ETAS-0 and ETAS-1 show mixed performance within 
the first 10 days of operations, with ETAS-1 presenting a better overall fit in the medium term, 
especially when the injection activity resumes following the pause of operations between 3 
November – 4 December 2018.  

Figure 17: Observed vs. expected number of events for the four ETAS versions tested on PNR-
2. The red circles indicate forecast rejection, while green ones indicate that the model adequately 
forecasts the number of events. 
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The RMS errors from Figure 18b reveal that also in the case of PNR-2 the ETAS models with the 
lowest misfit are those modelling the injection-driven rate with a well-specific calibration (ETAS-
1 and ETAS-2). However, in this case the RMS errors of ETAS-2 are heavily penalised by the 
misfit at injection period #1a, making it the second-best performing model after ETAS-1.  
The out-of-sample performance of the modified ETAS-3 model is encouraging. Panel b shows that 
ETAS-3, which uses parameters solely calibrated on PNR-1z data to forecast seismicity at PNR-
2, presents better performance than the benchmark ETAS-0 and compares well to the in-sample 
ETAS-1/2 models. This suggests that an injection-rate-driven ETAS model calibrated on PNR data 
may perform well in real-time applications during future hydraulic fracturing operations.  
 

 

8 Conclusions 
The PNR microseismic datasets present a unique opportunity to develop and evaluate statistical 
models of hydraulic fracturing induced seismicity. To guide model development, we first assessed 
two relationships between the operational pumping parameters and the induced seismic events. 
PNR data do not violate the contentious McGarr (2014) hypothesis that induced seismic moment 
is limited by injected volume. However, we interpret this result as only weak evidence in support 
of the hypothesis because other explanations are plausible, including the Van der Elst et al. (2016) 
argument that maximum magnitudes are as large as statistically expected given low seismic rates 
and a conservative tectonic maximum magnitude, consistent with model simulations by Mancini 
et al. (2019) with a tectonic maximum magnitude of Mw6.5.  
The relationship between total seismic moment and injected volume is complicated and non-
unique, and it appears different between the two wells, despite their close proximity and similar 
volume injections. We observe no obvious temporal trend (increasing or decreasing) in the seismic 
moment release or seismic rate with stage number. Between sleeves, the seismic moment released 
per unit injected volume varied over three orders of magnitude. That is, the same injected volume  
can lead to seismic moment releases that differ by approximately two moment magnitude units. 
This variability is a clear indication that the medium’s seismic response is at least partially 

Figure 18: Cumulative root mean square (RMS) errors of the ETAS models as a function 
of time for (a) PNR-1z and (b) PNR-2.  
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controlled by locally heterogeneous conditions and physical processes generating seismicity that 
are not captured by the simple linear relationship. Efforts to predict the moment release and 
maximum magnitudes using this effective seismogenic index will be adversely affected by this 
observed variability (in addition to uncertainties in b-values, magnitude scales and magnitude 
uncertainties).   
An analysis of the relationship between the earthquake numbers and injected volume revealed 
similar findings (a complex and non-unique relationship), but the induced earthquake rate varied 
less between sleeves than the induced seismic moment.  
Notwithstanding the substantial observed variability and thus uncertainty between operational 
pumping data and induced seismicity, we observe a generally positive co-dependency, which can 
be exploited to use injection rate to help forecast induced seismicity. This supports an 
incorporation of operational parameters into the standard ETAS model. On the basis of our 
analysis of the relationship between seismic rate and injection rate, we modified the ETAS model 
to include a background rate that is proportional to volume injection rate. The constants of 
proportionality were assessed in bulk (ETAS-1) and individually for each sleeve (ETAS-2). These 
models represent best case scenarios because we assume that the injection rate is known exactly 
in advance and that we know either the sleeve-specific seismic response parameter or the bulk 
well-specific response parameter. These constants can plausibly be estimated in real-time, 
although with additional uncertainty.  
The modified ETAS models capture the induced seismicity substantially better than the standard 
ETAS-0 model. In particular, the standard ETAS-0 model occasionally drastically underpredicted 
the number of events, because its forecasts were not driven by the injection rate. In contrast, the 
modified ETAS models were much closer in their forecasts of high seismicity rates, although 
formal tests still show occasional discrepancies.  
To mimic an out-of-sample test, we calibrated a modified ETAS model (ETAS-3) on PNR-1z data 
and evaluated its predictive skill with PNR-2 data. Encouragingly, the model performed 
comparatively to the in-sample models calibrated on PNR-2 data and outperformed the standard 
ETAS-0 model. This provides evidence that injection-rate driven ETAS models can contribute to 
useful probabilistic forecasts in future shale gas developments.  
Injection-rate driven ETAS models can also be usefully convolved with ground motion models to 
create time-dependent probabilistic seismic hazard (and risk) assessments. These probabilistic 
seismicity and hazard forecasting tools may provide useful information for operators, regulators, 
residents and other stakeholders. Future model development could focus on (i) capturing better the 
complex and non-unique relationship between injection rate and seismic response and (ii) real-
time parameter estimation for real-time applications.  
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