

SNS CCS Screening

Bacton – Neptune Energy September 2022

OPC UK LTD | 1-2 Apollo Studios, Charlton Kings Rd, London NW5 2SB | +44 (0)207 4281111 | london@opc.co.uk | www.opc.co.uk

Oilfield Production Consultants (OPC)

- Established in 1988
- Founder led and managed

- In-house technical team and software
- Technical expertise
- Expert, Independent, and Efficient

Screening Criteria

Criteria

- Existing pipeline infrastructure
- Driven by public data
 - COP reports, CO2Store, Strategic UK CCS Storage Appraisal Project, Lyell Collection
- Accelerated development opportunity
 - Depleted field
- Limited leak paths (wells)
- Timing is compatible with Bacton (up & running <u>2030</u>)
- Sufficient storage capacity until 2050

Existing pipeline infrastructure

- Pipeline data provided by Xodus (Supply SIG)
- Traffic light criteria:
 - Likelihood of availability in 2030
 - Currently producing or COP near-term
 - Good pipeline condition
 - Sufficient size
 - Maximum allowable operating pressure for Liquid/Supercritical CO2

Pipeline Data – Bacton

Pipeline	Operator	Key fields	Traffic Light	Likelihood of availability in 2030	Connection to Store	Pipeline Condition	Pipeline size (")	Pipeline Age in 2030	MAOP (barg)
SEAN P TO BACTON TERMINAL TRUNKLINE	ONE-DYAS	Sean	А	CoP ~ 2025	Yes / Maybe	А	NA	NA	NA
Leman BT to Bacton A2	Perenco Oil and Gas	Leman	А	Currently producing	Yes / Maybe	А	30	60	99.3
Leman 49/27 AP to Bacton A1	Perenco Oil and Gas	Leman	А	Currently producing	Yes / Maybe	А	30	62	93.1
Lancelot to Bacton	Perenco Oil and Gas		A	Currently producing	Yes / Maybe	А	20	38	103.5
Indefatigable 49/23 AT to 49/27 BT	Perenco Oil and Gas	Indefatigable	A	Currently producing	Yes / Maybe	А	30	59	110
Clipper PT to Bacton	Shell	Clipper South, Galleon	А	Currently producing	Yes / Maybe	А	24	40	112
Leman AP to Bacton	Shell	Leman	А	Currently producing	Yes / Maybe	А	30	63	99.3
Bacton to Clipper PT	Shell	Clipper South, Galleon	А	Currently producing	Yes / Maybe	А	3	36	150
Bacton to Leman AP	Shell	Leman	A	Currently producing	Yes / Maybe	А	4	63	45
LEMAN 49/26-BT TO BACTON	Shell	Leman	A	Currently producing	Yes / Maybe	Poor	30	57	Mothballed
Trent tie-in to Bacton	Perenco Oil and Gas	Cygnus	A	Unlikely CoP to mid 2030s	No	A	24	46	131
BACTON TO THAMES	IOG PLC	Elgood	A	Unlikely CoP to mid 2030s	No	A	24	44	129
HEWETT SOUTHERN EXPORT A-LINE TO BACTON	ENI UK LIMITED	Hewett	A	CoP now	Yes / Maybe	Poor	30" external	62	N/A following pipeline failure*
HEWETT NORTHERN EXPORT B-LINE TO BACTON	ENI UK LIMITED	Hewett	А	CoP now	Yes / Maybe	Poor	30" external	57	26.89**
SHEARWATER TO BACTON (SEAL)	Shell	Elgin Franklin	A	Unlikely CoP to 2040s	No	А	34	31	153

Public Databases

- <u>CO2 Stored</u>
- <u>Strategic UK CCS Storage Appraisal Project</u>
- <u>A Summary of Results from the Strategic UK CO Storage</u>
 <u>Appraisal Project</u>
- <u>NSTA Offshore Oil and Gas Activity Map</u>
- Lyell Collection field reports

Required Storage Capacity

• Required running period 2030-2050

- 2030 CO2 supply scenarios:
 - Core 1-3 Mt/yr
 - Build out 3-5 Mt/yr

- 2050 CO2 supply:
 - 20-25 Mt/yr

Required Storage Capacity (2030-50)

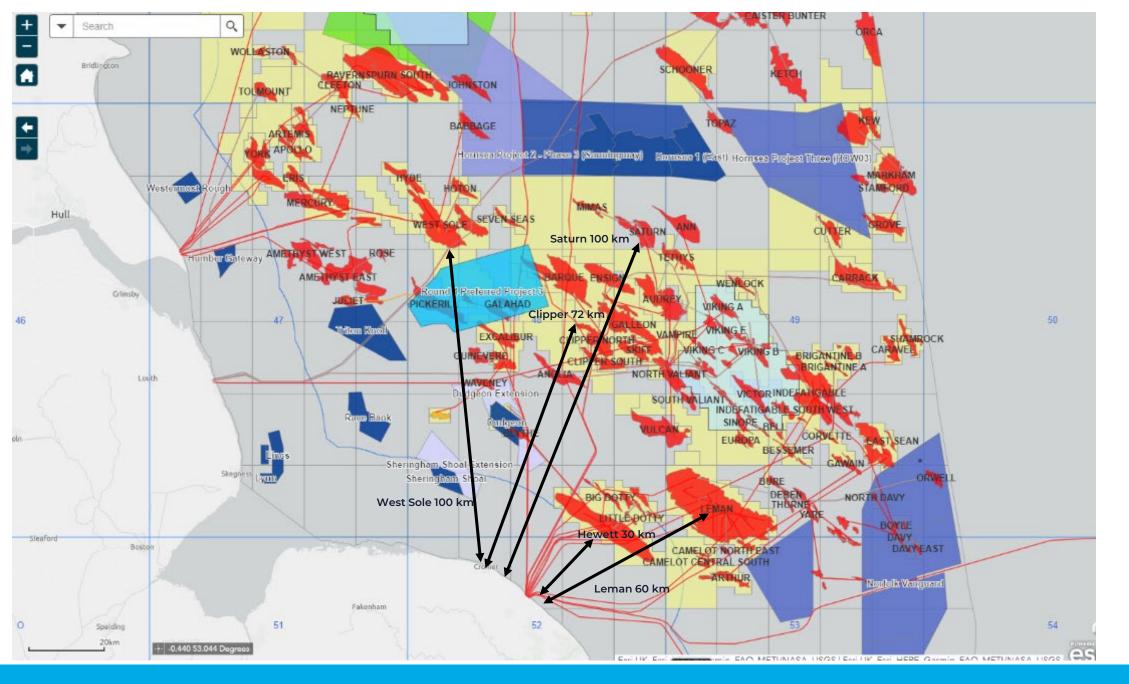
OPC

- Core scenario mid case: <u>42 MT CO₂</u>
 - 2 MT/yr
 - 1 well required
- Build Out scenario mid case: <u>**84** MT CO</u>₂
 - 4 MT/yr
 - 2 wells required

See appendix 1 for breakdown

Required Storage Capacity (2050-70)

OPC


- Assuming mid case 'Build Out' scenario
- Build out scenario mid case: **513** Mt CO2
 - 22.5 Mt/yr
 - 8 wells required

See appendix 2 for breakdown

Summary of Requirments

- $42 84 \text{ MT CO}_2$ storage (up to 2050)
- Existing pipeline to limit cost
- Not too many wells (limit containment risk)
- COP soon to align with Bacton timeline
- Gas field to limit apprasial cost and time

Results

 13
 Q3 | September 22
 Bacton SNS CCS Screening

Storage Site Results

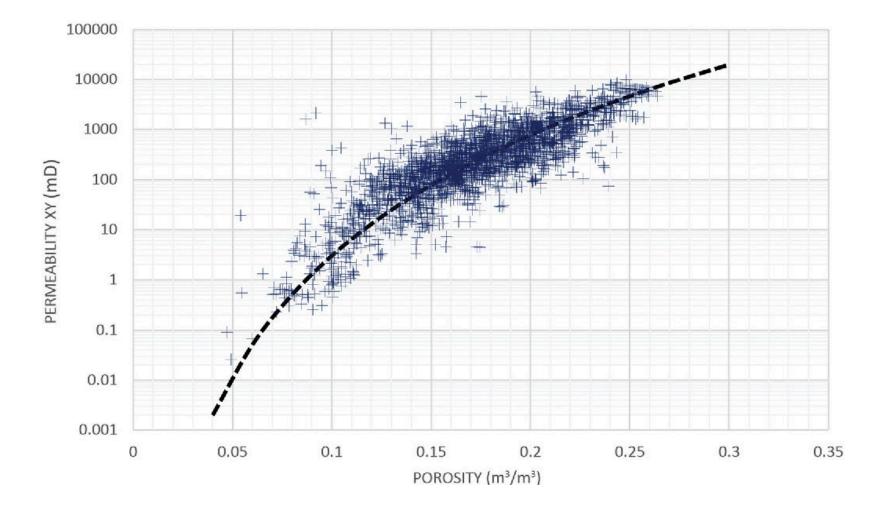
- 25 gas fields screened
- Majority of prospects target the Rotliegend Group

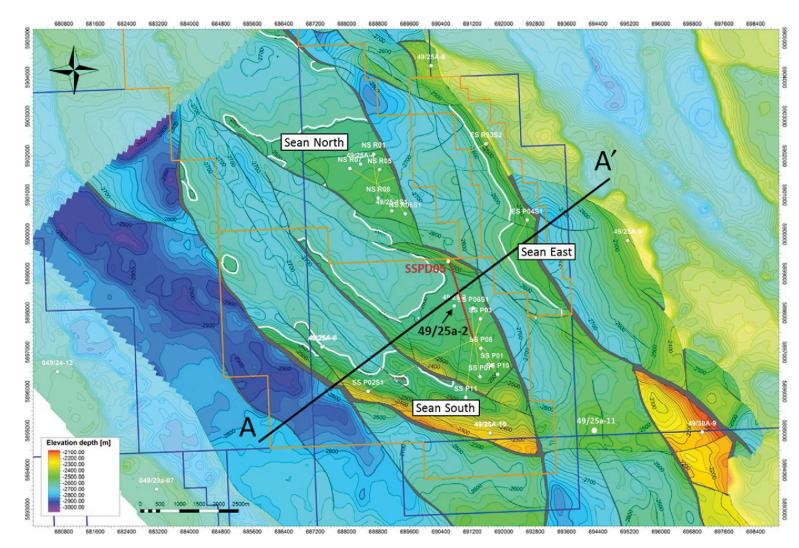
Field Name	Capacity (MT)	СОР	Pipeline	Wells	Gas Produced (BCF)	Distance (km)
Sean (N/S)	82	2025	SEAN P TO BACTON TERMINAL TRUNKLINE	16	722	100

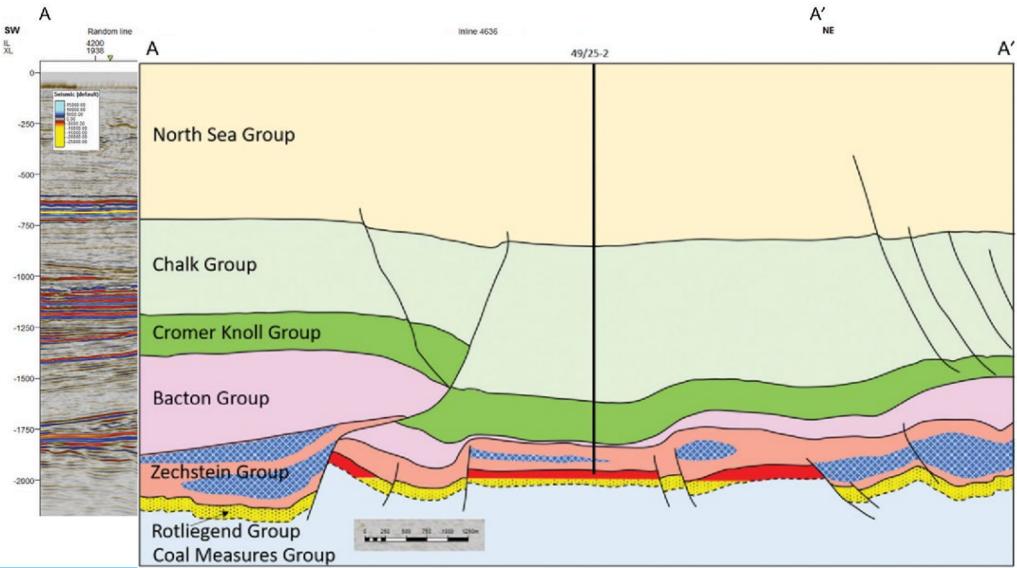
15Q3 | September 22Bacton SNS CCS Screening

Results – Sean (N/S/E)

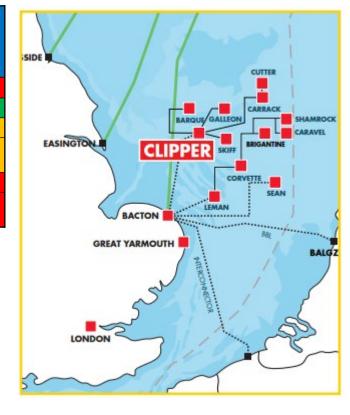
- Estimated ~82 MT CO2 capacity
 - Storage estimate may be ambitious due to water influx
- Partial communication between fields
- COP ~2025
- Dedicated Sean Bacton Trunkline
- 16 wells drilled
- ~100km offshore
- Initial pressure 3800-900 psi




Sean – Perm/Porosity


Sean - Containment

Sean - Containment



Field Name	Capacity (MT)	СОР	Pipeline	Wells
Barque	108	2040?	BARQUE PB - CLIPPER PT - Bacton	26
Clipper (Inc. S)	144	2040	Cipper PT to Bacton	4
Sean (N/S)	82	2025	SEAN P TO BACTON TERMINAL TRUNKLINE	16
Galleon	137	NA	GALLEON PG - CLIPPER - PMGAS CLIPPER PT - BACTON	17
West Sole	143	NA	Easington	25
Indefatigable & SW	357	2021	Indefatigable 49/23 AT to 49/27 BT	56

- Costs drastically increase with new pipeline
- Barque & Galleon route via Clipper which will operate until ~2040
- Indefatigable has potential
- West Sole closer to Easington

Indefatigable

- Porosity: 15%; permeability 10-1000mD
- Rotliegend Leman Sandstone Formation
- Stacked aeolian dunes
- 90km new pipeline required or an extension of Sean-Bacton pipeline
- Reservoir is subdivided into 15 compartments
- Only a very small number of wells exhibit water production
- Initial pressure: 4122 psi; RF 84%
- 56 wells

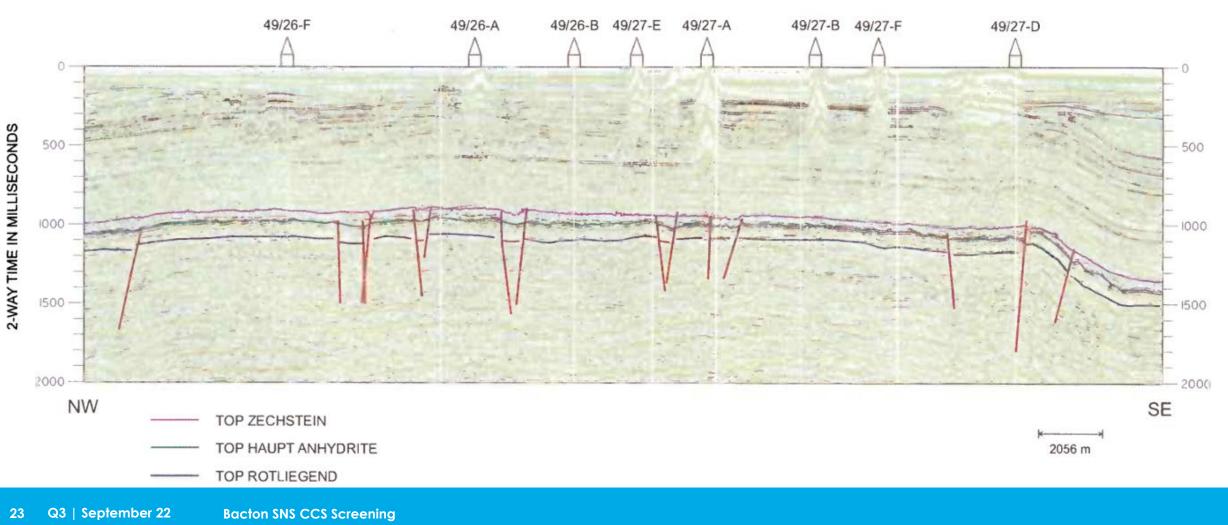
Popular stores:

- Hewett 36 wells drilled
- Leman 96 wells drilled
- Clipper COP ~2040
- Saturn abandoned

Bunter:

- 3 230Mt capacity Above Viking A
- 9 2000Mt capacity Above Leman

Leman & Hewett



- Main concern is quantity of wells intersecting any sealing units which act as migration pathways for buoyant CO₂
- Hewett & Leman are highly compartmentalised
- Future injection could target specific blocks with boundary sealing faults

Some thoughts on Leman

NW – SE (below); 300 psi depletion pressure

Hewett

risk

- Bunter above Hewett 205 MT of CO2 Storage
- 42 Wells intersect unit meaning legacy wells are high

					Scale			Comments
Criterion Enduranc	Endurance	Hewett Vi	Viking A	BC36	•	•	•	Comments
CO ₂ appraisal maturity	٠	•	•	٠	Ready to submit	Studies needed	Samples required	Appraisal well needed for BC36?
Capacity	•	•	•	•	>150 Mt	50-150 Mt	<50 Mt	Viking A small & faulted
SPE SRMS*	СДОН	сис	cuc	CUC or Prospect				
Injectivity	•	•	•	•	>100mD; no risk	Halite risk	Low K _H (<100 mD)	Saline aquifer injectivity better with 100+ m interval & thermal frac
Containment	•	•	•	•	All wells assured	CCS P&A needed	Multiple P&A'd wells	All good geological seal; risk is legacy wells
Hydrodynamics	•	•	•	•	Physics Clear	More Clarity Needed	Physics Unclear	Saline aquifer: $CO_2 \uparrow crest$
Monitorability	•	•	•	•	Required options viable	Limited MMV options viable	Insufficient MMV options viable	All good
Accessibility		٠	•	•	Option secured	Talks needed	Inaccessible	Discussions with operators

Taken from East Coast cluster assessment

Recommendations

- New pipeline likely needed
- Further research on Saline Aquifer Stores
- Further data / clarity on SNS gas fields
- Hewett & Leman further examination required
- There is ample storage, but can it be developed cost effectively with speed remains uncertain

26 Q3 | September 22 Bacton SNS CCS Screening

2030 - 2050 Core Capacity Requirements (MT CO₂)

2030 - 2050 Build Out Capacity Requirements (MT CO₂)

Case	Low	Mid	High
Storage Capacity (Cum. 2050)	21	42	63
Injection Rate (MT/yr)	1	2	3
Wells Required	1	1	1

Case	Low	Mid	High
Storage Capacity (Cum. 2050)	63	84	105
Injection Rate (MT/yr)	3	4	5
Wells Required	1	2	2

Appendix 1

Appendix 2

2050 - 2070 Build Out Capacity Requirements

Scenario	Low	Mid	High	
Storage Capacity (2050)	463	513	563	
Injection Rate (MT/yr)	20	22.5	25	
Wells Required	7	8	8	

Thank you

LinkedIn opc.co.uk max.richards@opc.co.uk

28 Q3 | September 22 Bacton SNS CCS Screening