Report summary

SIG Supply Chain & Technology

December 2022

Turner & Townsend

making the difference

Contributors

Anne Haase, Aquaterra (formerly Petrofac)

Majd Barbari, Petrofac

Charlotte Wright, Petrofac

Karen Freeman, EEEGR

Andrew Etherington, Turner & Townsend

Julian Manning, Paradigm Group

Max Richards, Oilfield Production Consultants (OPC)

Bill Cattanach, NSTA

David Broadhead, Axis Well Technology

SIG: SCT was established to consider:

- The supply chain necessary to support the front-end development and life of asset services
- At a high level, does the supply chain have the necessary competency & capability
- What are the key considerations around the supply chain, type and nature of suppliers needed
- What is the UK context on industrial decarbonisation including opportunities and threats
- The regional context of East Anglia in terms of a major industrial decarbonisation project
- What industry bodies and technology bodies are available to engage with the supply chain
- Technological considerations for the project
- Skills "considerations"

Report overview

Petrofac 🝺

Client Confidential

Turner & Townsend

07 October 2022

SIG Supply Chain & Technology report

Bacton Energy Hub

North Sea Transition Authority

making the difference

Contents

1	Summary	3
2	Introduction	4
3	Contributors	5
4	Purpose/Objectives	6
5	Approach	7
5.1	Assumptions	7
5.2	Unknowns	8
6	Supply Chain Considerations	9
6.1	Introduction	9
6.2	Industrial De-carbonisation: The UK Context	9
Pow	er CCUS	10
6.3	CCUS	12
6.4	Hydrogen	13
6.5	CCUS enable Blue Hydrogen	17
7	Skills Considerations	18
7.1	CCUS and Hydrogen skills	19
7.2	Tapping into industry skills pathways	20
8	Regional Considerations for East Anglia	22
9	Other Considerations	23
9.1	Timeline Considerations & Observations	23
9.2	Technology Considerations	24
9.3	Initial Findings & Observations	25
10	Relevant Industry Bodies & Trade Associations	27
10.1	Industry Bodies: Wider Oil, Gas & Chemical	27
10.2	Industry Bodies: CCS and Hydrogen	31
10.3	Trade Associations	33
11	Suggested next steps	34

Key observations relative to supply chain

- 1) Critical and needed throughout the life cycle
- 2) Transferable skills exist
- 3) High level of "UK content" is achievable
- Resource is available. However skills capacity is a major (industry) risk
- 5) Wide range of industry and local stakeholder forums available
- 6) A phased approach to supply chain engagement will be necessary to ensure optimum market response

Work Package	Supply chain	Туре	Supply chain risk	Perceived Supply chain risk	Perceived risk - Long lead/schedule critical	Local
Engineering & Consulants						
Existing asset resuse study	Mature	Consultant	Capacity	?	High	•
PreFEED/FEED	Mature	Contractor	Capacity	High	High	
EPC/EPCM	Mature	Contractor	Capacity	High	High	
Planning (for DCO)	Mature	Consultant	Capacity	Low	High	
Permitting (for EA)	Mature	Consultant	Capacity	Low	High	0
Legal	Mature	Consultant	Capacity	Low	Medium	
Funding/financial	Mature	Consultant	Capacity	Low	TBC	
OE	Mature	Consultant	Capacity	Low	Low	

lodification to existing site(s)

Site clearance						
Decommissioning, Disinvestment	Mature	Contractor	Capacity	Low	Low	
Dismantle & Demolition	Mature	Contractor	Capacity	Low	Low	
Integration						-
Integration						
Control & automation	Mature	Contractor	Capacity	TBC	TBC	
	Mature	Contractor	Capacity	TBC	TBC	
Process connections					TBC	

12 Bacton - new build

OSBL - Main packages						
HV supply (MW from Grid)	Mature	Utility	Grid connection	High	High	
Desalination plant	Mature	OEM	Capacity	Medium	High	
Steam supply?	?	?	?	?	?	
Seawater connection	?	?	?	?	?	
Brine connection	?	?	?	?	?	?

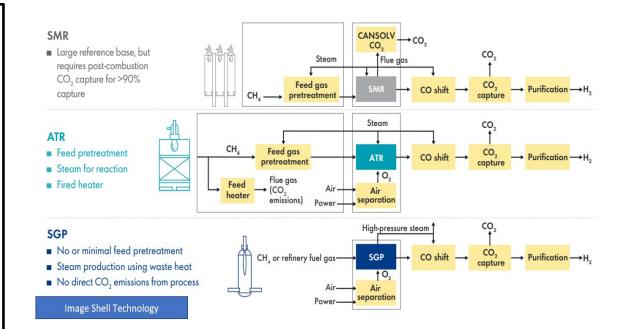
ISBL - Main packages

Enabling works	Mature	Contractor	Capacity	Low	Low	
Blue Hydrogen main process equipment	Immature	OEM	Capacity & Capability	High	High	Potent

Key observations relative to technology

A high level of technology maturity exists

Facilities fitted with CCS (at scale) are in operation currently (US, Norway)


Major global investment in CCS at scale between now and 2030 $\,$

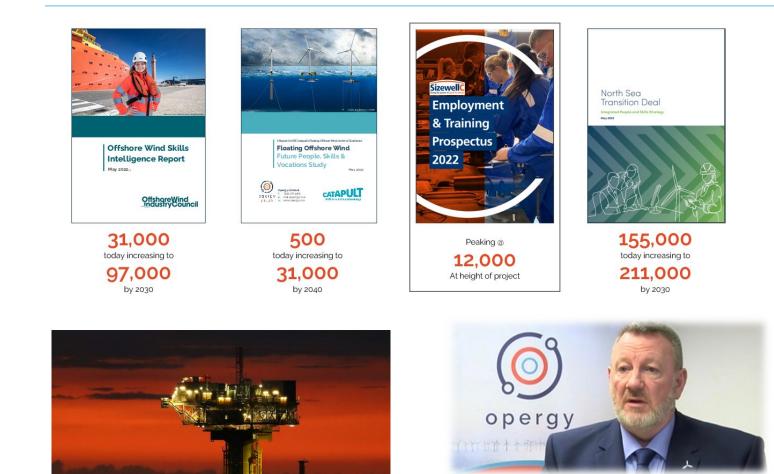
TRL & supply chain capacity for Hydrogen enabled CCS (at scale) is a key issue – early "lock in" recommend

Collaboration with other projects and clusters is key Hynet (Vertex)

The UK is able to supply most of the goods and service - international procurement is anticipated

BEH represents an opportunity to deliver a paradigm shift in the use of digital and automation this will be critical to cost effective delivery of major engineering construction projects going forward

Key observations relative to skills


'Skills shortage could put energy transition at risk'

1 December 2022 ➡ Offshore Wind

Turner & Townsend

OEUK's annual Workforce Insight report found the number of offshore workers has been reducing since 2010

Petrofac P

- The UK does not have sufficient capacity to meet future demand, scarcity as well as recruit & retention are major concerns
- Transferrable skills exist: civil and engineering construction industry as well as the oil, gas, chemical and industrial gases sectors

Dealing with skills capacity

- Pathways, skills passports
- Attracting from other sectors, e.g. military, farming
- Modern Methods of Construction and offsite working
- Digital & automation
- Displaced people

Regional considerations

Threats

- 1) East Anglia is not an industrial heartland when compared with likes of Teesside, Hynet or Grangemouth, so Bacton will need to consider how it competes for supply chain
- 2) Limited dual carriageway or motorway within East Anglia
- 3) Sizewell
- 4) Offshore wind

Opportunities

- 1) Lowestoft is a thriving centre for companies servicing the offshore energy industry
- 2) Norwich Airport & London Stansted Airport
- 3) Felixstowe is the busiest container port in the UK
- 4) Rail links into the area
- 5) Anglian Water

Supply chain engagement & management plan:

- 1) Define the contracting & project drivers (local content, SME, digital, MMC)
- 2) Expression of interest or similar process for potential Pre-FEED/FEED consultant & contractors
- 3) Market engagement with technology companies / a paid feasibility study to engage with key technology vendors
- 4) Detailed supply chain analysis to identify local and regional content across work packages including suppliers, manufactures, fabricators and construction contractors
- 5) Supply chain awareness campaign

