Bacton Energy Hub Hydrogen Demand

Progressive Energy

December 2022

Progressive Energy

- Low carbon power project developer
- Active in CCS, and low carbon power for 20+ years
- Originator and lead partner on Track 1 HyNet cluster
- Commissioned to deliver phase 1 Bacton Net Zero report (late 2020)

SIG key objectives

- Quantify potential hydrogen demand in Bacton catchment area by sector from 2030-2050
- Understand seasonal and diurnal variability in demand across sectors
- Understand key sensitivities, drivers and blockers to demand cases
- Assess hydrogen storage requirements and identify storage scenarios
- Inform supply and infrastructure SIGs

Demand forecasting

- Develop demand forecasts for BEH
 - Context of the core project and buildout scenario (for 2030, 2040, 2050)
- Approach based on current natural gas use
 - Modified to reflect electrification, energy efficiency and technology developments
- Local industrial and power demand
- Blending into NTS to serve London
- Full conversion of NTS to hydrogen
- But first: Bacton's connections...

Bacton connections

Pipes

- H₂ Transmission Pipes Repurposed
- --- H₂ Transmission Pipes New or Repurposed

Shipping Routes

- \rightarrow CO₂ Exports
- H₂ Imports

Services

Hydrogen Production H, Industrial Hydrogen Use Cluster ... Blending H₂ with natural gas into the gas network (H) Underground H₂ Storage Underwater H₂ Storage Potential H₂ Production from Wind Energy Potential H₂ Production from Nuclear Power **Power Station** - the Underwater CO2 Storage Regions Cadent SGN

Rest of the UK

2030 demand

This column shows production from 350 MW core project

Demand dominated by blending to London

2040 demand

London shifting to 100% hydrogen

Other domestic, power and industry demand emerging

2050 demand

London shifting to 100% hydrogen

Other domestic, power and industry demand emerging

Demand forecasts (TWh/yr)

Sector	2030	2040	2050
Domestic / commercial	5.7 (blending)	28.4	61.8
Industry	0.6	4.8	6.5
Power	1.6	20.0	12.0
Transport (excl marine/aviation)	0.2	1.9	5.6
Total	8.1	55.1	85.9

Note: (depending on load factors, especially for electrolysis)	Core scenario	350 MWth 'blue'	Produces: c. 3 TWh/yr
	Buildout scenario	3.6 GW 'blue' 6.3 GW 'green'	Produces: c. 40-50 TWh/yr

Storage assessment

- Mismatch between supply and demand: drives need for storage
 - Domestic demand is much higher in winter
 - Electrolytic hydrogen production relies on available renewable electricity
- Storage options in a hierarchy
 - Linepack
 - Local tank storage
 - Salt caverns
 - Depleted gas fields/aquifers
- Findings:
 - Core scenario linepack is adequate
 - Buildout case depleted gas fields/aquifers dependent on wind climate