

Bacton Energy Hub

Hydrogen Supply Special Interest Group

December 2022

Paul Lafferty

CEO, Summit Energy Evolution Ltd.

Copyright © 2022 Summit Energy Evolution Ltd.

Hydrogen Supply SIG Core Team Participants:

Hydrogen Supply SIG – Terms of Reference

Terms of Reference (high level):

- 1. Review of CCS enabled and electrolyser hydrogen production technologies
- 2. Evaluate optimum development scenarios given an aspirational 2030 start up
- **3.** Identify likely phasing to shift from CCS enabled to electrolytic hydrogen production
- 4. Estimate hydrocarbon feedstock availability for CCS enabled hydrogen production at scale at Bacton
- 5. Evaluate likely CCS storage options available to the BEH
- 6. Identify and evaluate utility service requirements (power, water etc.) required to support the project
- 7. Develop CAPEX and OPEX estimates for the selected development scheme and calculate LCOH for each case

BEH Vision:

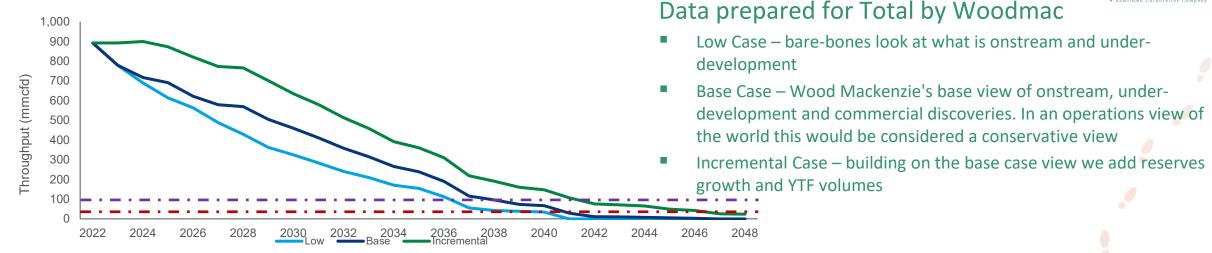
Work Breakdown Structure:

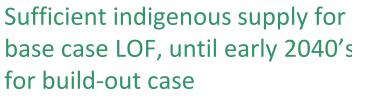
- 1. Bacton LOF Hydrocarbon production (Total)
- 2. CCS enabled hydrogen production technology review (Progressive Energy)
- 3. Electrolytic hydrogen production technology review (Genesis)
- 4. Project phasing (Fluor)
- 5. Carbon Capture and Storage availability (Neptune/OPC)
- 6. BEH additional power demand (Saipem)
- 7. Desalination (Neptune)
- 8. Class 5 cost estimates (SEEL/IO Consulting)
- 9. Development schedule (SEEL)
- 10. Project Risks (SEEL)
- 11. LCOH (SEEL/IO Consulting)
- 12. Overall project management (SEEL)

Establish a sustainable hydrogen system to ensure Bacton remains a key regional Energy Hub with a low carbon future

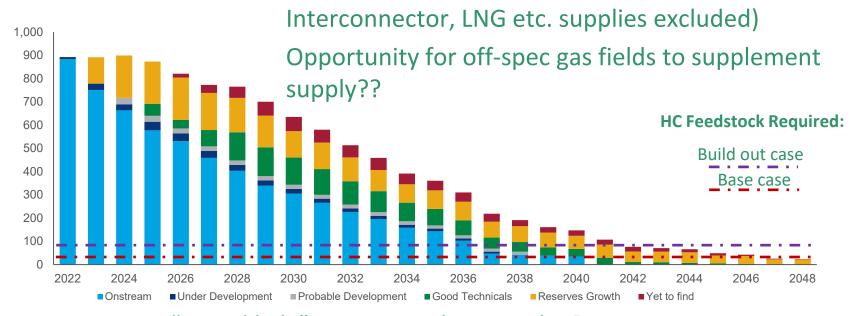
Presented in detail by JAW in Demand SIG review

Description	Core Project	Build-out		
Supply Base Assumption	CCS Enabled hydrogen	CCS Enabled & Electrolytic H2		
CCS Enabled & Electrolytic H2 Phasing	1 or 3 (depending upon demand) x 355MW SMR/ATR plants	2030 – 3 x 355MW SMR/ATR plants		
		2040 - 3 x 355MW SMR/ATR plants 2 x 1.8GW upscaled SMR/ATR plants + 1 x 2.1 GW Electroliser		
		2050 - 2 x 1.8GW upscaled SMR/ATR plants 1 x 2.1 GW Electroliser + 2 x 2.1 GW Electroliser (3 x 355MW plants retired)		
Max. supply from CCS enabled hydrogen TWh & (% of demand)	1 plant - 3 TWh – (100% of demand)	2030 – 9 TWh (100%) 2040 – 39 TWh (54%) 2050 – 30 TWh (33%)		
Max. supply from Electrolytic hydrogen TWh & (% of demand)	Zero	2030 – 0 TWh (0%) 2040 – 18 TWh (46%) 2050 – 54 TWh (80%)		


- Base Case: 2030 1-3 (demand dependent)
 CCS Enabled H2 Production units
- Build out case: 2040 Additional upscaled
 CCS enabled H2 production plant + at scale
 Electrolyser plant
- Build out case: 2050 Upscaled CCS enable plant retained, original CCS enabled plants retired, new GW scale electrolysers installed



Anticipated Hydrocarbon LOF Production Through Bacton


[hroughput (mmcfd)

Production deferment increasing plateau period may provide longer supply side if gas use comes under pressure due to environmental concerns (not currently likely?)

Profiles apply to UKCS fields only (i.e.

"Most likely" Incremental Case Volumes

CCS Enabled Hydrogen Production

Key Screening criteria:

ure Utilities: O&M e Power/Water etc.

Extensive technology screening review highlighting two leading contenders:

Gas Heated Reformer + Autothermal Reformer

Safetv

- Non-Catalytic Partial Oxidation

Both technologies are mature, have been demonstrated and optimised at scale

Broadly comparable in terms of Cost and performance

Final decision would be consortium lead based on make up of the JV, previous experience, availability etc.

Future work required to firm up costs, identify areas of potential saving and efficiencies

Electrolyser Hydrogen Production

All technologies listed at high level of readiness. However:

- Deployment at scale (GW++) not yet defined
 - Sizing/stacking
 - Balance of Plant requirements (emergency flare etc.)
- Large power requirement
 - Will require dedicated Green Power solution (Offshore wind, Nuclear?)
- Current cost (at scale) still prohibitive but expected to fall
- Current Supply Chain (manufacturing) capacity
- Significant water consumption requirements (see desalination)

Despite nascent deployment at scale currently, technology is expected to deliver in timeframe of BEH to predominately phase out CCS-Enabled Hydrogen (2040 onwards)

Refer to Genesis Green Hydrogen Technical Readiness Report

	Alkaline	PEM	SOEC	AEM ²	
Efficiency	70-75% (Typical)	70-75% (Typical), 75% (Siemens)	90% (Haldor), 90%+ (Bloom)	88% (Hydrolite)	
TRL	9	9	7	7	
Start Time (Warm/Cold)	5 min / 60 min (Typical)	30s / 5min (Plug)	6min / 15hr (Bloom)	"Fast" (Hydrolite)	
Operational Flexibility	40-100% (Cummins)	10-100% (Siemens) 5-125% (Cummins)	10-100% (H-T)	"Good" (Hydrolite)	
Product Pressure	30barg (Cockerill) 30barg (McPhy) Atm (Thyssenkrupp, Nel)	20-30barg (ITM) 40barg (Plug)	Atm (Bloom) 2barg (H-T)	35barg (Enapter)	
Lifetime / Stack Replacement	10yr (Sunfire)	10yr (Siemens)	5yr (Bloom)	10yr (Hydrolite)	
Purity	99.8 (Cockerill) 99.99 (after drying)	99.999 (ITM), 99.999 (Plug)	99.99 (after drying)	99.999 (Hydrolite)	
Capital Cost (\$/kW)	Moderate	High	High	Low Claimed (Hydrolite)	
Feedwater Quality Requirement	Flexible	High	High	Flexible	
Size / Weight	Size / Weight 45m ² /MW		~45m²/MW	Note 1	

Notes:

1. Insufficient information exists in the public domain to provide more detailed view;

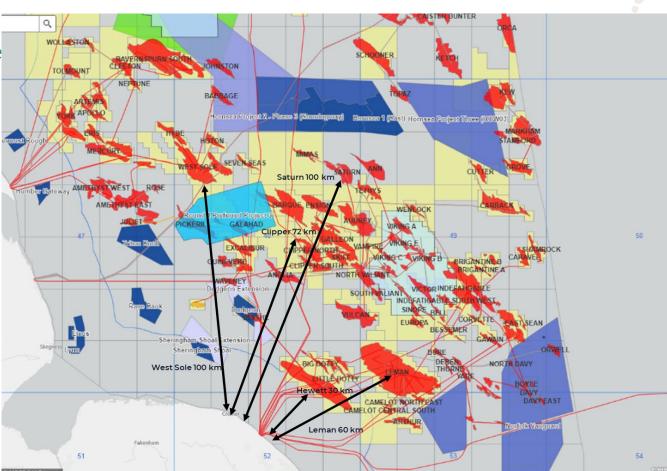
- 2. Few instances of AEM's being used beyond pilot scale applications and therefore many of these assessments are claimed by the manufacturers rather than demonstrated at scale.
- 3. In general, publicly available data can vary. The table above is a guide only.

Carbon Capture and Storage (CCS)

Scope:

Initially 1-5 MTPA (dependent upon scenario) Re-use of existing infrastructure (well/Pipeline/Platforms where possible (See Infrastructure SIG Presentation) Use of depleted gas fields prioritised (aquafers also possible) Phase ambivalent at present

Field relinquishment compatible with BEH timing (available 2030)


Numerous fields identified:

- Hewett
- Leman
- Indie

Note:

- Clipper
- Saturn
- West Sole
- Sean

Scoping performed PRIOR to NSTA 1st CCS licencing round

Utilities Power and Water

TOTAL ELECTRICAL DEMAND (Mwe)					90
COD	COD PROCESS SUB-PROCESS PLANT NAMEPLATE				Demand [Mwe]
			CCS enabled Plant 1	355 MWth	28
2030 CCS	Production & CCS	CCS enabled Plant 2	355 MWth	28	
		CCS enabled Plant 3	355 MW <mark>t</mark> h	28	
2030	enabled		SWRO PLANT 1	45 m³/h	0.20
H2	H2 Desalination	SWRO PLANT 2	45 m³/h	0.20	
			SWRO PLANT 3	45 m³/h	0.20

Water Requirement:

Parameters	Core Project	Build out				
	2030	2030	2040	2050		
H2O input required (m ³ /hr)	45	135	1,527	3,264		
Seawater intake (m³/hr)	126	378	4,277	9,140		
Electricity requirement (kW)	198	594	6,720	14,363		
Capacity (m ³ /day)	1,080	3,240	36,656	78,344		
Typical Plant footprint (m ²)	1,233	2,124	19,729	27,066		
Water Storage (m ³)	1,080	3,240	36,656	78,344		
Water Storage Footprint (m ²)	150	300	2,000	4,000		

2030 – Both scenarios feasible using NG (upgrading Earlham Grid Substation feeder)

2040/50 scenarios would require significant infrastructure upgrades not currently planned – Dedicated sustainable energy source required – Wind/Solar/Nuclear etc. with grid stabilisation

	TOTAL ELECTRICAL DEMAND (Mwe) 6600								
COD	PROCESS	SUB-PROCESS	PLANT	NAMEPLATE	Demand [Mwe]				
		Due duetieur 0	CCS enabled Plant 1	355 MW <u>th</u>	O (RETIRED)				
		Production & CCS	CCS enabled Plant 2	355 MW <u>th</u>	O (RETIRED)				
2030	CCS		CCS enabled Plant 3	355 MWţ <u></u>	O (RETIRED)				
2050	enabled		SWRO PLANT 1	45 m³/h	0 (RETIRED)				
	H ₂	Desalination	SWRO PLANT 2	45 m³/h	O (RETIRED)				
			SWRO PLANT 3	45 m³/h	0 (RETIRED)				
COD	PROCESS	SUB-PROCESS	PLANT	NAMEPLATE	Demand [Mwe]				
		Production & CCS	CCS enabled Plant 4	1800	141				
	CCS		CCS enabled Plant 5	1800	141				
2040	enabled H2 Desalination					Develingtion	SWRO PLANT 4	228 m³/h	1.0
2040		SWRO PLANT 5	228 m³/h	1.0					
	Classing but a	Production	ALKALINE ELECTROLYSER 1	2100 Mwe	2100				
	Electrolytic H2	Desalination	SWRO PLANT 6	378 m³/h	1.7				
COD	PROCESS	SUB-PROCESS	PLANT	NAMEPLATE	Demand [Mwe]				
		Production	ALKALINE ELECTROLYSER 2	2100 Mwe	2100				
2050 Electrolytic		ALKALINE ELECTROLYSER 3	2100 Mwe	2100					
2050	H2		SWRO PLANT 7	378 m³/h	1.7				
	Desalination	SWRO PLANT 8	378 m³/h	1.7 Slide 9					

Project High Level Risk Register

Risk/Description	Risk	Possible Mitigation	Risk
	Pre- Mitigation		Post- Mitigation
CCS Enabled Hydrocarbon Production			
Lack of domestic supply		Further review of reserves estimates. Option to use imported gas via Interconnectors. Earlier electrolytic hydrogen	
High gas price		Government (CFD) support likely required. Consider dedicated supply option.	
Facilities footprint exceeds available space		Further work required particularly for build-out phases. Commence consents/planning process early.	
Electrolytic Hydrogen Production			
TRL for production at scale is too late for BEH		Current pace of technical development is focused on production at scale	
Facilities footprint could exceed available space		Further work required particularly for build-out phases. Commence consents/planning process early. Assess offshore option.	
OWF power supply intermittent, back up required		CCS Enabled hydrogen, hydrogen storage & grid connected power supply offer potential solutions	
Construction & Schedule			
Complex construction adjacent to operational facilities (SIMOPs)		Similar construction projects at COMAH sites have been successfully executed before	
Phasing of CCS Enabled & electrolytic hydrogen mismatched with demand requirements.		Demand requires continual assessment up to FID and beyond. Early contractual commitments.	
Supply chain constraints particularly with electrolytic hydrogen supply chain causes delays		Early engagement/assessments & detailed planning. Possible early commitments with key suppliers.	

Key Risk Areas:

decision

Costs – particularly variable OPEX (Feedstock, power)

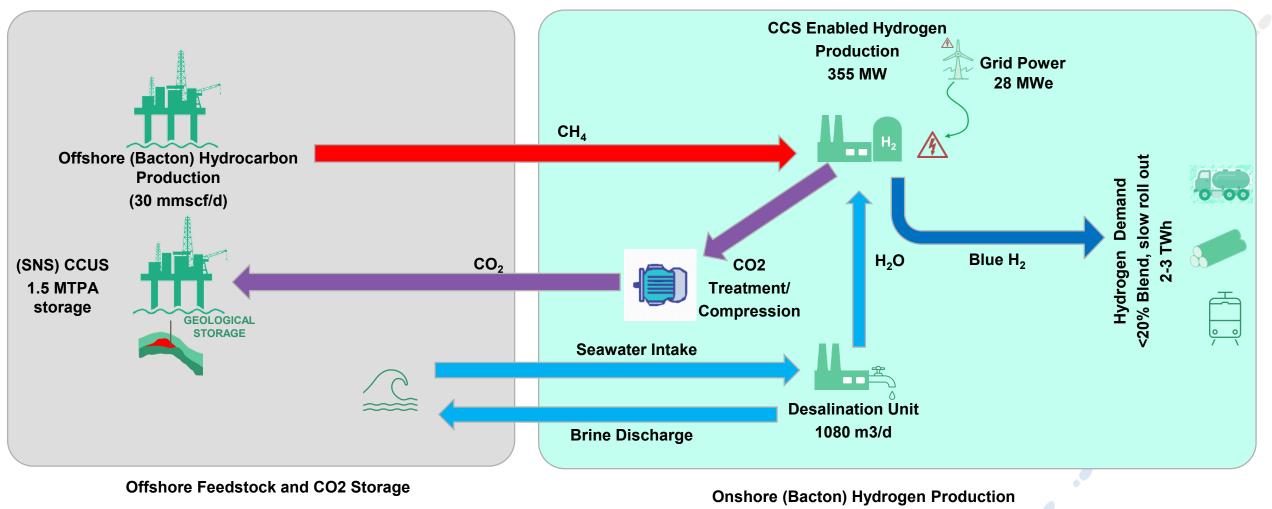
Space constraints – Base case ok, electolyser plants are large Power – Significant requirement for build out case Demand – Market yet to be established. Blending is a key

CCS	
Lack of suitable sites delays CCS Enabled hydrogen development	CCS progress to be monitored closely for alignment with BEH. Recent licensing round appears encouraging
Cost to access CCS infrastructure is too high	SNS offers good CCS opportunity. CCS is a Gyt/industry commitment & will require an 'acceptable' commercial model. BEH could access a larger regional CCS scheme.
Power Supply	J
Inadequate local grid connection capacity for BEH facilities	Supply for initial CCS enabled hydrogen requirements appears possible. Evaluate alternatives (grid upgrade, renewables etc)
Desalination Facilities	
Brine discharge & dispersal	Use of existing pipelines for distant offshore disposal, blending, etc
Facilities footprint & location	Further work required particularly for build-out phases. Commence consents/planning process early.
General	
Project economics are a challenge	Detailed modelling & facilities optimisation. Gyt incentives. Macro pressure to make energy transition successful, <u>Gyy CfD arrtangements</u> for the hydrogen economy
Insufficient demand for hydrogen	Detailed demand modelling. Focus on key consumers je power stations. Gyt incentivisation and blending into the grid
Delays in regulatory processes adversely impacts schedule	Early applications & stakeholder engagement. Energy transition a national priority
Public perception/relations issues and resistance to BEH especially blue hydrogen development	Stakeholder engagement & PR process. CCS Enabled hydrogen an enabler for energy transition
Possibility of CCS & BEH competing for same land/space	Future co-ordinated & detailed assessment with <u>Gyt</u> support following recent CCS licensing applications

Project Schedule (To Start Up)

	Gated process		Planning & permitting		FID			
		<u> </u>	Stage gate process	<u> </u>	-			
	0	1	2	3	4	5	6	
	Launch	Identify & Initiate including options	Pre- FEED	Define & Plan FEED	Execute Design, Build & Commissioning	Completion & Commissioning (handover to operations)	Beneficial Operational trials	COD
	2022 1	o Qtr 2 2023						
Scenario 1			Qtr. 2 2023 to Qtr. 4 2023					
optimistic			6 months	Qtr. 1 2024 - Qtr. 4 2024				
				12 months	Qtr. 1 2025	to Qtr. 1 2028		
					36 r	nonths	Qtr. 2 2028	Mid 2028
							3 months	
	2022 t	o Qtr. 2 2024						
			Qtr. 1 2025 - Qtr. 4 2025					
Scenario 2 pessimistic			12 months	Qtr. 1 2026 to Qtr. 2 2027				
Dessimilistic				15 months	Qtr. 2 2027 to Qtr. 2 2032			
					60 r	nonths	Qtr. 3 & 4 2032	Start 2033
							6 months	
	2022 t	o Qtr. 2 2023						
Scenario 3			Qtr. 3 2023 - Qtr. 1 2024					
target			9 months	Qtr. 2 2024 - Qtr. 2 2025				
				12 months		to Qtr. 1 2029		
					40 r	nonths	Qtr. 2 & 3 2029	Qtr. 3 2029
	DCC	or ICPA will also driv	e timeline if needed for FID				6 months]

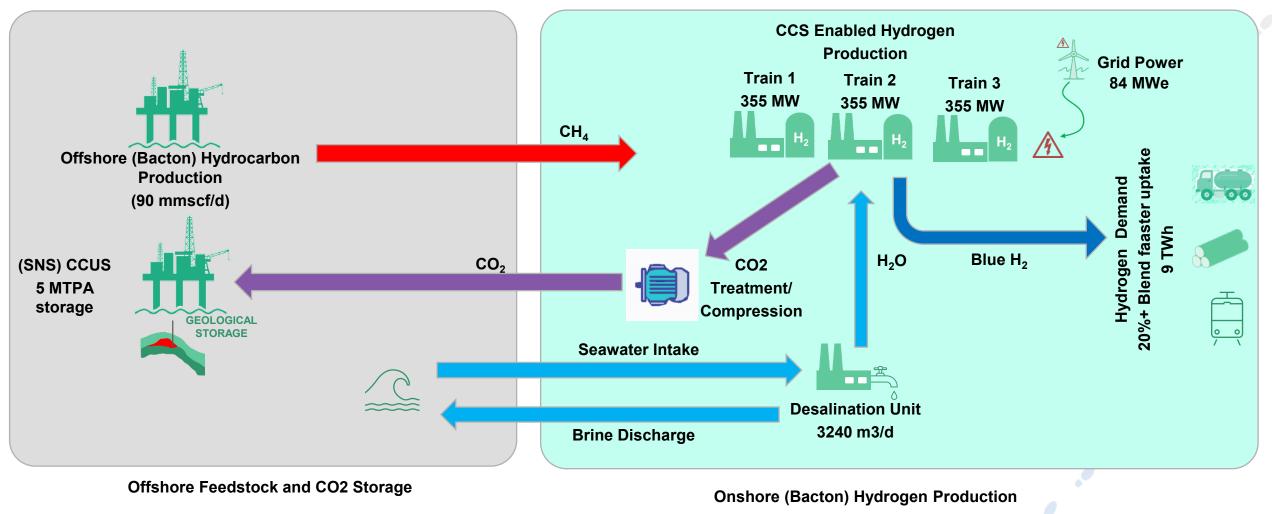
Engagement of consultants & Engineering contractors


General supply chain awareness, events & engagement

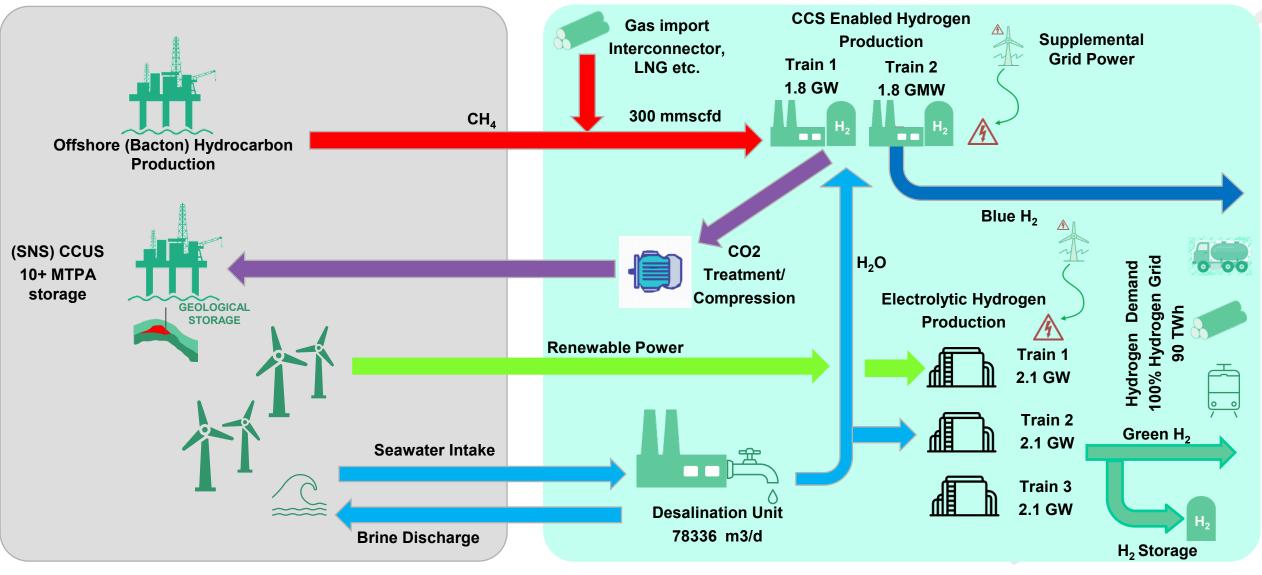
Engagement with Technology solution providers

Engage with good & service providers including construction companies

Bacton Energy Hub – 2030 Core Project



.0


Bacton Energy Hub – 2030 Build Out Case Project

Bacton Energy Hub – 2050 Build Out Case Project

Onshore (Bacton) Hydrogen Production