

UK Oil and Gas Reserves and Resources

Contents

1. Introduction and executive summary	3
2. UK reserves and resources	4
3. Oil and gas reserves and contingent resources progression	5
4. Detailed breakout of oil and gas reserves and contingent resources	10
5. Prospective resources (yet-to-find)	15
Appendices	20
A. Data sources	20
B. Reserves and resources – NSTA classification – comparison of NSTA vs SPE PRMS	21
C. Play listings	24
D. Metric versions of tables	25

 $This \ publication \ can be found \ on \ the \ NSTAs \ website: \ https://www.nstauthority.co.uk/news-publications/publications/.$

© NSTA Copyright 2025

You may re-use this information free of charge in any format or medium, under the terms of the NSTA's User Agreement.

To view this, visit: https://www.nstauthority.co.uk/site-tools/access-to-information/ or email correspondence@nstauthority.co.uk

Enquiries to:

North Sea Transition Authority 50 Broadway London SW1H 0DB

Introduction and executive summary

Oil and gas will remain a vital part of the UK energy mix for decades to come as we make the transition to net zero; and continuing to support production and UK energy security will remain important¹.

Managing the basin's production to maximise value from the United Kingdom Continental Shelf ('UKCS') is important to meet our energy demands.

The purpose of this annual report is to provide an estimate of the UKCS's remaining recoverable petroleum resources.

The report finds:

- The NSTA's estimate for Proven and Probable ('2P') UK oil and gas reserves as at end 2024 is 2.9 billion barrels of oil equivalent ('bn boe'), 0.4bn boe lower than as at end 2023.
- In 2024, 401 million boe ('mmboe') were produced, and 90 million boe net were removed from 2P Reserves. New field development activities added a little less than 50mmboe through the granting of consent to two new field development plans ('FDP'). There were no field development plan addenda ('FDPA') in 2024.
- The UK's contingent resource level is significant with a central estimate of discovered undeveloped resources of 6.2 billion boe.
 Much of this resource is in mature developed areas, with some under consideration for development. The maturation of contingent resources presents an opportunity for the UK's petroleum resources. This would require substantial investment in both new field developments and incremental projects.

- In aggregate, UKCS petroleum reserves and discovered resources both remain at approximately 70% oil and 30% gas, when expressed in oil equivalent terms.
- The limited exploration drilling of four wells discovered less than 100mmboe in 2024².
 A key part of exploration stewardship now is to progress the attractive opportunities within the prospective resource portfolio into drill-ready prospects, and into subsequent discoveries.
- The mean prospective resources in mapped leads and prospects are estimated as 4.6 billion boe, a 31% increase from the end of 2023. This is due to the inclusion of the additional prospective resources from the 33rd Licensing round. This is supplemented by an additional mean prospective resource of 11.2 billion boe estimated to reside in plays outside of mapped leads and prospects.

 $^{^{1}\} https://www.nstauthority.co.uk/media/s1ccoemh/nsta-august-2025-production-projections-plus-ccc-and-desnz-demand-projections.xlsx$

² Note that this figure is subject to revision as a result of future appraisal activity

2. UK reserves and resources

The NSTA estimate for remaining UK recoverable petroleum resources, include reserves, undeveloped resources and undiscovered resources. A total of 47.7 billion boe of oil and gas had been produced from the UKCS by the end of 2024.

The NSTA's current central estimates given as at the end of 2024 are summarised in Table 1 below (estimates as at the end of 2023 are given in parentheses).

Table 1 – Oil and gas reserves and resources central estimates as at end 2024 (end 2023) in billion boe

Reserves	2P
Reserves	2.9 (3.3)
Contingent resources	2C
Producing fields	1.4 (1.6)
Proposed new developments	1.5 (1.5)
Licensed marginal discoveries	1.4 (1.0)
Unlicensed marginal discoveries	2.0 (2.0)
Prospective resources	Mean
Prospects and leads	4.6 (3.5)
Plays	11.2 (11.2)

Note: The classification of reserves and Resources is explained in Appendix B.

Ranges for these estimates are shown in sections 4 and 5.

Overall oil and gas reserves as at the end of 2024 showed a decrease compared to end 2023. This is a result of production of around 401mmboe in 2024 not being offset by additions to the reserves base as a result of Field Development Plan ('FDP') approvals or additional reserves adjustments for producing fields.

Contingent resources showed an increase compared to end 2023. This is due to more discoveries being applied for in the 33rd licence round by operators and four exploration

successes offset by two new fields being promoted out of contingent resources to reserves. Marginal discoveries have been split into licensed and unlicensed categories for clarity.

The mean prospective resources in mapped leads and prospects are estimated as 4.6 billion boe. This is supplemented by an additional mean prospective resource of 11.2 billion boe estimated to reside in plays outside of mapped leads and prospects.

Summing the overall estimates of the four categories of resources (reserves, contingent resources, prospective resources associated with mapped features and play-level prospective resources) does not imply any particular levels of probability that those volumes will ultimately be produced.

Note: definitions of terms, and an explanation of how the NSTA categorisation compares to the Petroleum Resources Management System ('PRMS') of the Society of Petroleum Engineers ('SPE'), are given in Appendix B. Reserves and resources for developed fields and fields where development projects are under discussion were compiled from data provided by operators – these data have not been audited by the NSTA.

Reserves of developments affected by the judgement from the Court of Session on 29 January 2025 are classified here as reserves on 31 December 2024.

Proven, probable and possible reserves and resources for a large number of individual fields and discoveries have been aggregated to provide the totals shown. Note that figures for prospective (i.e. not yet discovered or "yet-to-find") resources are naturally subject to a higher degree of uncertainty than those for discovered resources. There will also be varying degrees of uncertainty in how much of the contingent resources will ultimately be developed.

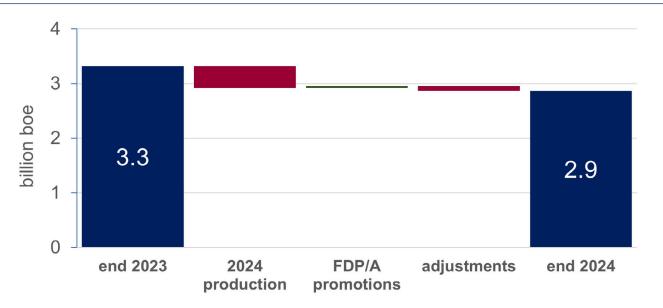
3. Oil and gas reserves and contingent resources progression

3.1 UKCS reserves and resources progression in 2024

Figure 1, below, illustrates the progression of resources and reserves between the major categories during 2024.

- Four new discoveries from exploration successes in 2024 added less than 100mmboe to the contingent resource base.
- Two new Field Development Plans ('FDPs')
 consented to in 2024 resulted in less than
 50 million boe movement from contingent
 resources to reserves.
- Production during 2024 of around 401mmboe resulted in a reduction in (remaining) reserves.

Figure 1: Reserves and resources progression


(Numbers in billion boe as at end 2024)

3.2 Reserves progression

Reserves reduced from 3.3 billion boe as at end 2023 to 2.9 billion boe as at end 2024. This was a result of:

- Production during 2024 of 401mmboe
- Two new field development plans consented to in 2024 resulted in less than 50 million boe movement from contingent resources to reserves.
- A net decrease in the reserves estimates for producing fields of 90mmboe. This was due to downward revisions in some fields and life of field reductions (CoP acceleration) but offset by positive additions from other infield activities, improved field performance and life of field extension (CoP deferral).

Figure 2: 2P reserve changes from end 2023 to end 2024

3.3 Contingent resources progression

The UK's contingent resources represents a significant opportunity to progress discovered resources to development. There was a 0.2 billion boe increase in the central estimate of total contingent resources during 2024, the overall estimate is 6.2 billion boe. There were a number of changes within the contingent resources categories, as a result of:

 two new field developments consented to in 2024 resulted in around 50 million boe movement from contingent resources to reserves.

- Four new discoveries from exploration successes in 2024 added less than 100mmboe to the contingent resource base.
- Additional discoveries being applied for in the 33rd licence round by operators adding over 400mmboe.
- The exploration success and relicensed discoveries were offset by revised estimates of existing fields from operators.

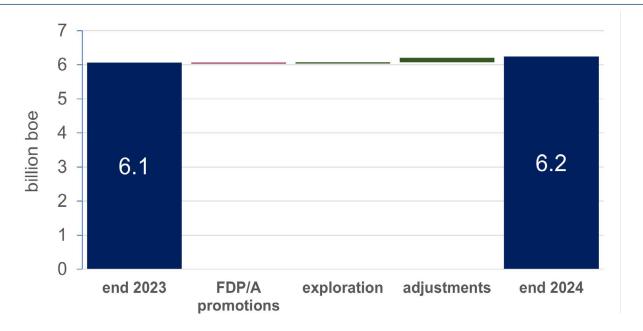


Figure 3: 2C resource changes from end 2023 to end 2024

3.4 Production and reserves replacement trends

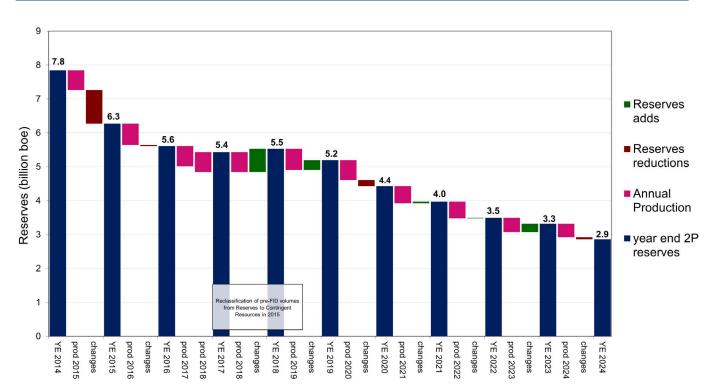
Reserves replacement ratio

This provides an indication of how current production levels are being replenished through the maturation of contingent resources and exploration discoveries into reserves.

The underlying reserves replacement ratio in 2024 was -14%. Around 50mmboe of reserves were removed due to revisions by operators offset by two Field Development Plans. This compares to production of 401mmboe in 2024.

Replacement of proven and probable reserves by resources maturation remains an issue.

Figure 4 below shows how 2P reserves and the reserves replacement ratio have changed over the past 28 years. It can be seen there is a large variation in the reserves replacement ratio from year to year, partly as a result of oil price fluctuations. The negative reserves replacement ratio in 2015 was a result of the NSTA re-categorising certain types of projects from reserves to contingent resources. Prior


to 2015, DECC and its predecessors included in the reserves category projects that had not yet been sanctioned but were expected to be sanctioned in the near future. This is permitted under the SPE PRMS (the "Justified for development" category), however the NSTA now includes projects in the reserves category only where the project has been sanctioned by the participants and the NSTA has issued a Development and Production Consent.

20 200% Reserves Replacement Reserves (billion boe) 100% 0% -10 -100% 2016 2002 2003 2004 2005 2006 2007 2008 2009 2011 2012 2013 2014 2000 2017 2020

Figure 4: Oil and gas 2P Reserves replacement

Figure 5 below shows how production and the central estimate of reserves have changed in the past 10 years. As can be seen, overall UK reserves have decreased.

Figure 5: 2P Reserves and production 2014 to 2024

3.5 Estimated Ultimate Recovery historic trends

Estimated Ultimate Recovery ('EUR') is defined as production (to date) plus (remaining) reserves. Figures 6 and 7 show how the EUR from the UKCS based on known reserves (proven, probable and possible) has evolved over time for oil and gas fields, respectively.

EUR increased significantly from 1970 to 1990, indicating that exploration success was adding to the contingent resource base and significant contingent resources were being matured to reserves. However, in recent times the trend has reduced considerably and now is almost flat, because of low maturation of contingent resources to reserves and the low level of discoveries.

It should be noted that the drops observed in EUR in 2015 are because of the change in the NSTA's approach to defining reserves described earlier in this section.

Figure 6: Oil Estimated Ultimate Recovery vs time (to end 2024)

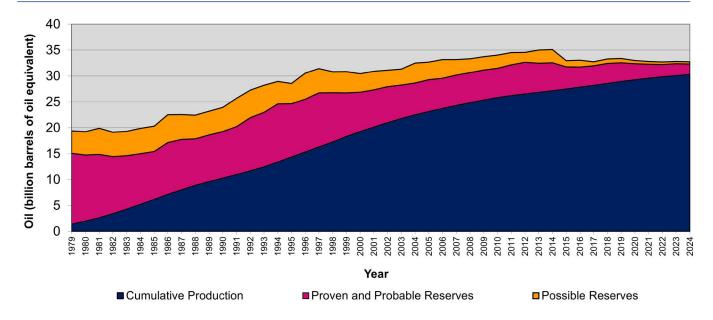
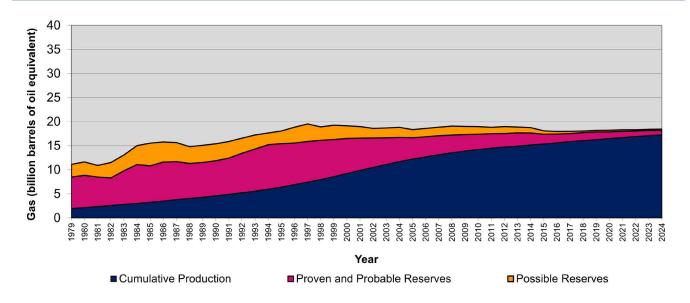



Figure 7: Gas Estimated Ultimate Recovery vs time (to end 2024)

Detailed breakout of oil and gas reserves and contingent resources

In this section, ranges for the estimates of oil and gas reserves and contingent resources are presented. The gas reserves and contingent resources for proposed new field developments are categorised according to whether they are "dry gas", "gas from gas condensate fields", or "associated gas from oil fields". The oil and gas reserves and contingent resources are also split out by area (Northern North Sea ('NNS'), Central North Sea ('CNS'), Southern North Sea ('SNS'), Irish Sea ('IS') and West of Shetland ('WoS')).

4.1 Ranges for oil and gas reserves and contingent resources

Oil and gas reserves can be classed into three categories (proven, probable and possible, or 1P, 2P and 3P) depending on the level of confidence that they will eventually be produced (see Appendix B for definitions). Contingent resources can similarly be classed as 1C, 2C, 3C depending on confidence level.

The following tables indicate the split of petroleum liquids and gas reserves and resources and the 1P/2P/3P and 1C/2C/3C ranges according SPE PRMS definitions as given in Appendix B. Proven, probable and possible reserves and resources for a large number of individual fields and discoveries have been aggregated to provide the totals shown. Summing the overall estimates of the three categories of reserves and resources does not imply any particular levels of probability that those volumes will ultimately be produced. The ranges tabulated below

should be considered as indicative of the various underlying uncertainties.

UK remaining reserves and contingent resources are both approximately 70% oil and 30% gas when expressed in oil equivalent terms. It should be noted that the split of oil and gas in total production during 2024 was approximately 60% oil and 40% gas, a small decrease in the proportion of gas.

Table 2 - Oil reserves and resources as at end 2024 (2023) in billion boe

Reserves	1P	2P	3P
Oil reserves	1.9 (2.2)	2.9 (3.3)	3.6 (4.0)
Oil contingent resources	1C	2C	3C
Producing fields	1.0 (1.1)	1.4 (1.6)	1.8 (2.1)
Proposed new developments	1.2 (1.2)	1.5 (1.5)	1.7 (1.8)
Licensed marginal discoveries	0.6 (0.4)	1.4 (1.0)	2.9 (2.1)
Unlicensed marginal discoveries	0.8 (0.8)	2.0 (2.0)	3.9 (3.8)
Total contingent resources	3.6 (3.5)	6.2 (6.1)	10.3 (9.9)

Note: The classification of reserves and resources is explained in Appendix B.

Table 3 - Oil reserves and resources as at end 2024 (2023) in billion boe

Oil	1P	2P	3P
Oil reserves	1.3 (1.5)	2.0 (2.3)	2.4 (2.7)
Oil contingent resources	1C	2C	3C
Producing fields	0.8 (0.8)	1.0 (1.0)	1.3 (1.4)
Proposed new developments	1.1 (1.1)	1.3 (1.3)	1.5 (1.6)
Licensed marginal discoveries	0.3 (0.1)	0.8 (0.6)	1.9 (1.4)
Unlicensed marginal discoveries	0.4 (0.5)	1.2 (1.3)	2.3 (2.4)
Total contingent resources	2.5 (2.6)	4.1 (4.2)	7.0 (6.8)

Table 4 - Gas reserves and resources as at end 2024 (2023) in billion boe

Gas	1P	2P	3P
Gas reserves	0.6 (0.7)	0.9 (1.1)	1.2 (1.3)
Gas contingent resources	1C	2C	3C
Producing fields	0.2 (0.3)	0.4 (0.6)	0.5 (0.7)
Proposed new developments	0.1 (0.1)	0.2 (0.2)	0.2 (0.2)
Licensed marginal discoveries	0.3 (0.2)	0.6 (0.4)	1.1 (0.7)
Unlicensed marginal discoveries	0.6 (0.5)	1.4 (1.1)	2.6 (2.1)
Total contingent resources	0.4 (0.4)	0.9 (0.8)	1.6 (1.4)

Note: Due to rounding, subtotals may not exactly equal the sum or difference of the values entered elsewhere in the table. Versions of the above tables in metric units (million tonnes of oil and billions cubic metres of gas) are presented in Appendix D.

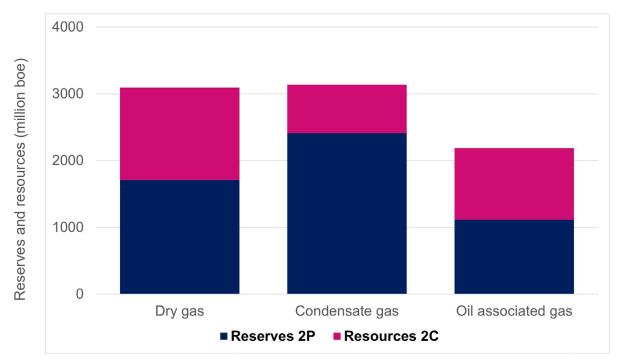

4.2 Gas reserves distribution by type

Figure 8 indicates how UKCS gas reserves are distributed between dry gas fields (primarily located in the SNS), gas from gas condensate fields and associated gas from oil fields (both primarily located in the CNS, NNS and WoS).

The largest contribution to future gas production is expected to come from gas condensate fields. These fields tend to be produced at constant rates throughout the year (periods of planned and unplanned downtime apart), compared to dry gas fields where production rates can be higher during periods of peak demand (e.g. in winter) and

lower during periods of low demand (e.g. in summer). Also gas condensate fields need oil export infrastructure to convey their produced liquids to market. About 70% of the condensate gas reserves and resources lie in the CNS.

Figure 8: Distribution of UKCS gas reserves and resources (central case)

Tables 5 and 6 indicate the range of resources associated with gas reserves and contingent resources in proposed new developments.

Table 5 - Gas reserves by field type as at end 2024 (2023) in bcf

Fields in production or under development	1P bcf	2P bcf	3P bcf
Gas reserves from dry gas fields	1288 (1491)	1710 (2065)	2270 (2736)
Gas reserves from gas condensate fields	1558 (1802)	2410 (2775)	3110 (3310)
Gas reserves from associated gas from oil fields	801 (908)	1115 (1283)	1443 (1535)

Table 6 - Gas contingent resources by field type as at end 2024 (2023) in bcf

Fields where proposed development plans are under discussion	1C bcf	2C bcf	3C bcf
Gas resources from dry gas fields	666 (702)	1382 (1422)	1670 (1717)
Gas resources from gas condensate fields	505 (502)	723 (710)	985 (969)
Gas resources from associated gas from oil fields	737 (1363)	1071 (2027)	1434 (2845)

4.3 Petroleum resource distribution by geographic area

Figures 9 and 10 show the distribution of UKCS oil and gas reserves and contingent/discovered resources by area. Most oil

reserves are within the WOS and CNS areas with significant gas potential in the CNS and SNS.

Figure 9: Oil reserves and resources by area (2P/2C)

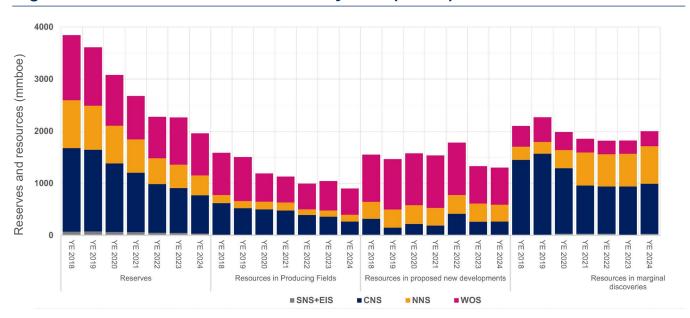
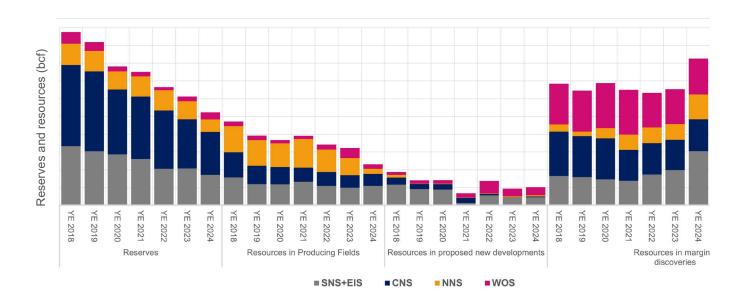
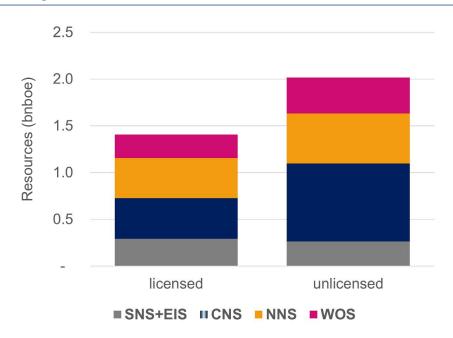



Figure 10: Gas reserves and resources by area (2P/2C)



4.4 Contingent resources by licence status

A significant resource potential remains in unlicensed acreage. A breakdown of contingent resources by area and licensed/unlicensed acreage is shown in Figure 11 below. This shows that about two thirds of the contingent resources in other discoveries

(360 discoveries with 2 billion boe from a total of 3.4 billion boe) was on unlicensed acreage at the end of 2024. The proportion of gas is the same in licensed and unlicensed acreage at 42%.

Figure 11: Contingent resources (2C) in marginal discoveries on licensed and unlicensed acreage

5. Prospective resources (yet-to-find)

5.1 Summary

The overall prospective resource figures, when expressed in billions of boe, have increased reflecting the new prospects from the 33rd licence round launched in 2022. The NSTA estimates that the mean yet-to-find prospective resources of leads and prospects in the inventory is **4.6** billion barrels of oil equivalent. Within this inventory, a range of volume outcomes is possible, as illustrated in Table 7.

There were changes in the number of features from the lead, prospect, and drill ready prospect categories as the database was updated with the features from the 33rd licence round, some features mature from previous licence rounds with technical work and are subsequently reclassified or the licences relinquished. Drilled features are removed from the prospective resources category and discoveries are classified in the contingent resources category.

Table 7 – Prospective resources associated with leads and prospects, with cut-offs

UKCS	P90	Mean	P10
Total prospective resources (bnboe)	3.3	4.6	6.0

All values calculated stochastically using the Monte Carlo method, with no dependencies. Volumes are risked recoverable prospective resources. 10 million boe unrisked volume cut-off (30 million boe unrisked West of Shetland) and 15% Geological Chance of Success (CoS) cut-off applied.

Leads and prospects included in Table 7 meet a volume threshold of 10 million boe mean prospective resources (or a 30 million boe mean volume cut-off West of Shetland) and have an estimated technical (geological) chance of success greater than 15%. These thresholds are consistent with drilling activity taking place under current market conditions.

The prospective resources available in the lead and prospect Inventory are potentially supplemented by an additional **11.2** bnboe of mean prospective resources that are estimated in plays where the Industry has yet to map leads and prospects systematically, partly due

to the need for improved geophysical datasets (see Table 10). By their nature, these resources are more speculative, with greater risk, but also greater opportunities for value creation due to the impact of successful de-risking of chance factors that are shared among a collection of related leads and prospects (play risk).

It is important to recognise that these estimates reflect the current state of subsurface knowledge, limited by the extent of the work that could be performed by the NSTA, and that the figures will be revised over time as work on the prospect inventory and Play portfolio matures.

5.2 Methodology

Previously, during 2017/18, the NSTA made substantial changes to the methodology (Figure 7) by which the UKCS's Yet-to-Find Prospective Resources are estimated, using industry best-practices and building upon the legacy inventory of Leads and Prospects inherited from the NSTA's predecessor organisations.

The Yet-to-Find estimate now also includes Prospective Resources added through Play Analysis, building upon the NSTA's recent regional geoscience initiatives and activities including the Government-Funded Seismic Programmes, the Regional Mapping Project (delivered by Lloyds Register), and post-doctoral research projects (delivered by Heriot-Watt University, the University of Aberdeen and the University of Durham).

A more detailed description of the methodology used is set out in the NSTA's Reserves and Resources report for 2017³.

5.3 Results

All volumes presented in this section (including tables and figures) are *risked recoverable* prospective resources. Onshore and unconventional hydrocarbon resources are not included in the assessment. Ultimately the Yetto-find potential of the UK Continental Shelf will

be determined by licensing and activity levels. The ultimate volume that can be delivered will depend critically on how industry generates new targets, the efficiency of resource progression from plays through to drill-ready Prospects and maintaining a 'social licence to operate'.

Lead and prospect-level prospective resources

The lead and prospect inventory held by the NSTA currently contains around 6000 features derived largely from operator evaluations, supplemented by in-house evaluations.

It would be reasonable to expect that only a subset of this resource base could be produced commercially, since ultimate recovery will be limited by a number of factors. To model which leads and prospects the industry would consider to be viable targets from a geological perspective, the NSTA used a simple set of cutoffs that are consistent with recent drilling activity and so capture features that may, if matured to a drill-ready status, be targeted under current market conditions. This is illustrated in Tables 8 and 9 which show the outcome of applying a 10 million boe volume cut-off

(increased to 30 million boe West of Shetland) and a 15% geological chance of success cut-off. The feature count is now reduced to a figure of 530 that is more consistent with the UKCS's history of approximately 2,800 offshore exploration wells to date.

Table 8 presents prospective resources by basin with 15% Geological Chance of Success ('CoS') and 10 million boe volume cut-offs applied (30 million boe West of Shetland).

The volume cut- off is applied to the Mean Prospective Resource estimate for each feature.

Table 9 shows the distribution of Prospective Resources by Resource Category with cut-offs applied. In order to progress towards drill-ready status, leads and prospects must mature successfully via technical work programmes.

In Table 8, 8.1, 8.2 and 9 the oil equivalent volumes and total prospective resources, in billion boe, have been updated to reflect the movement of features between resource categories and removal of drilled opportunities from prospective resources category.

Table 8 – Prospective resources associated with basins, with cut-offs (in bnboe)

Basin	P90	P50	Mean	P10	% Gas	Feature count
West of Shetland	0.2	0.5	0.7	1.3	30%	42
Northern North Sea	0.3	0.6	0.6	1.0	15%	87
Central North Sea	1.5	2.1	2.2	3.3	16%	287
Southern North Sea	0.4	0.8	09	1.5	89%	98
East Irish Sea	0.0	0.1	0.1	0.3	90%	16
Total prospective resources	3.3	4.4	4.6	6.0	34%	530

Table 8.1 - Licensed prospective resources associated with basins with cut-offs

Basin	P90	P50	Mean	P10	% Gas	Feature Count
West of Shetland	0.0	0.1	0.3	0.6	46%	16
Northern North Sea	0.1	0.1	0.2	0.3	32%	26
Central North Sea	0.4	0.7	0.8	1.2	19%	90
Southern North Sea and East Irish Sea	0.1	0.2	0.2	0.6	100%	24
Total prospective resources	0.9	1.4	1.5	2.2	34%	156

Table 8.2 - Unlicensed prospective resources associated with basins with cut-offs

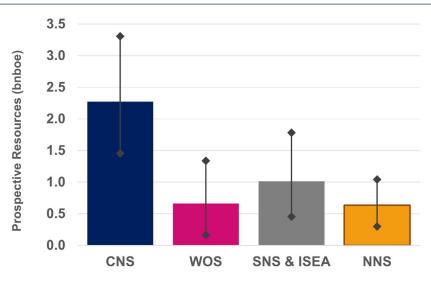

Basin	P90	P50	Mean	P10	% Gas	Feature Count
West of Shetland	0.1	0.3	0.4	0.9	19%	26
Northern North Sea	0.2	0.4	0.5	0.8	7%	61
Central North Sea	0.9	1.4	1.5	2.5	14%	197
Southern North Sea and East Irish Sea	0.3	0.6	0.8	1.4	97%	90
Total prospective resources	2.1	3.0	3.1	4.4	34%	374

Table 9 - Prospective resources asso	ciated by categories, with cut-offs
--------------------------------------	-------------------------------------

Resource category	P90	P50	Mean	P10	% Gas	Feature Count
Leads	1.2	1.9	2.1	3.1	37%	238
Prospects	1.5	2.1	2.2	3.1	30%	272
Drill-ready prospects	0.1	0.2	0.3	0.5	47%	20
Total prospective resources	3.3	4.4	4.6	6.0	34%	530

Notes: All totals calculated stochastically using Monte Carlo method, with no dependencies (i.e. totals are not calculated arithmetically). Volumes are risked recoverable prospective resources.

Figure 12: Mean prospective resources associated with leads and prospects and P90-P10 ranges (with cut-offs applied*)

Play-Level prospective resources

In 2017/2018, the NSTA invested substantial effort in systematically estimating the prospective resources at a play level that lie outside of mapped leads and prospects, adopting industry best-practice methods. As at the lead and prospect level, risked prospective resources have been modelled stochastically to produce a range of volume estimates, which can be categorised in various ways, most simply at a basin level (Table 10). A high-level list of plays is appended to this report in Appendix C.

^{*10} million boe unrisked volume cut-off (30 million boe West of Shetland; unrisked) and 15% Geological Chance of Success (CoS) cut-off applied.

Table 10 - Play-level prospective resources

	-	⊢ Oil equivalent (billion boe)				
Basin	P99	P90	P50	Mean	P10	P1
West of Shetland	2.0	3.1	4.6	4.7	6.3	7.8
Rockall Trough	0.0	0.3	2.1	2.5	5.1	8.6
Northern North Sea	0.2	0.4	0.8	0.9	1.7	2.7
Central North Sea	0.6	0.9	1.4	1.5	2.1	2.8
Mid North Sea High	0.0	0.1	0.5	0.5	1.1	1.6
Southern North Sea	0.2	0.4	0.8	0.8	1.2	1.6
East Irish Sea	0.0	0.0	0.0	0.0	0.1	0.3
SW Britain	0.0	0.0	0.2	0.3	0.6	1.0
Total				11.2		

Notes: Play-level prospective resources by basin, no volume or Chance of Success (CoS) cut-offs applied, Total calculated using Monte Carlo with no dependencies. Volumes are risked recoverable prospective resources. Northern North Sea includes East Shetland Platform, SW Britain includes SW Approaches and Cardigan Bay. Mid North Sea High includes Forth Approaches Basin.

Appendices

Appendix A

Data sources

The data for both developed fields and development projects under discussion were compiled from data provided by operators via the NSTA's annual UKCS Stewardship Survey. The Survey also collected data on Contingent Resources in producing fields – these data were not collected prior to 2016.

The end 2024 survey covered:

- 241 producing fields
- 8 projects where an FDP had been approved but production had not yet started
- 6 other projects where FDPs were under discussion as at the end of 2024

Data for unsanctioned Discoveries where no development project is under discussion (referred to as potential additional resources in previous Department of Energy and Climate Change reports) were not collected via the UKCS Stewardship Survey.

The methodology for deriving estimates for prospective resources is presented in Appendix C.

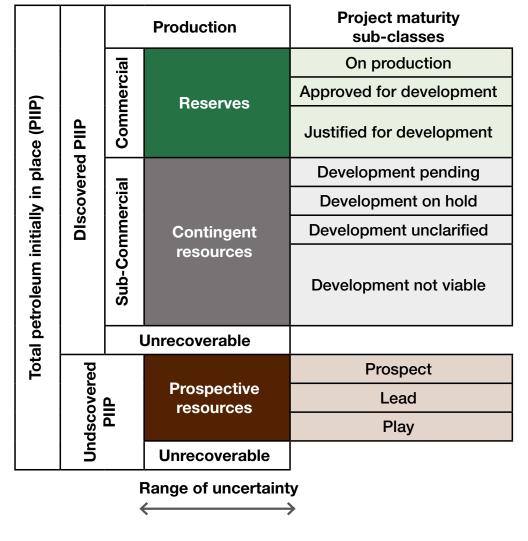
Conversion factors:

The approach used to calculate barrels of oil equivalent is based upon the following (approximate) conversion factors:

- 1 tonne of crude oil = 7.5 barrels of oil equivalent
- 1 cubic metre of gas = 35.315 cubic feet of gas
- 1 cubic foot of gas = 1/5,800 barrels of oil equivalent

Increasing chance of commerciality

Appendix B


Comparison of NSTA terminology with SPE PRMS

The NSTA has sought to adjust its definitions and they are now more closely aligned with those recommended by the Petroleum Resources Management System ('PRMS') of the Society of Petroleum Engineers ('SPE'). The full definitions associated with this classification system can be found in SPE PRMS 2005 (updated 2018)⁴.

The NSTA now classifies Reserves and Resources into the following main categories: Reserves, Contingent Resources and Prospective Resources, with further sub classes aligned with SPE PRMS as laid out in Figure 13.

Figure 13: Comparison of NSTA classifications with SPE PRMS

SPE PRMS

Source: SPE 2018

⁴ https://www.spe.org/en/industry/reserves/

NSTA classification

		Lower (1P)	Central (2p)	Upper (3P)	Data source
Reserves	Fields in production or under development				qi
		Lower (1C)	Central (2C)	Upper (3C)	<i>r</i> ardsh vey
	Contingent resources in producing fields		 	 	UK Stewardship Survey
Contingent resources	Proposed new developments		 	 	
	Marginal discoveries		 	I I	NSTA in house
		Lower	Mean	Upper	
Prospective resources	Prospects		1		NSTA in house
	Leads			1	NST hot
	Plays				

Source: SPE 2018

Reserves

These are discovered, remaining volumes that are recoverable and commercial. They can be proven, probable or possible, depending on confidence level.

In the UKCS Stewardship Survey, operators were asked to provide reserves data in accordance with the following definitions for fields in production or under development (which are broadly in line with previous DECC guidance)

 Proven (1P): Reserves that, on the available evidence, are virtually certain to be technically and commercially producible, i.e. have a better than 90% chance of being produced

- Probable (2P): Reserves that are not yet proven, but which are estimated to have a better than 50% chance of being technically and commercially producible
- Possible (3P): Reserves that at present cannot be regarded as probable, but which are estimated to have a significant – more than 10% but less than 50% – chance of being technically and commercially producible

Contingent resources

Contingent resources are those quantities of petroleum estimated to be potentially recoverable from known accumulations, but the applied project(s) are not yet considered mature enough for commercial development.

The "contingent resources in producing fields" represent discovered undeveloped resources in the field determined areas.

The "contingent resources in proposed new developments" represent discovered undeveloped potential in new field developments under consideration.

The "contingent resources in marginal discoveries" represent undeveloped discoveries where no development proposals are currently being proposed, in licensed and unlicensed areas.

In the UKCS Stewardship Survey, operators were asked to provide information on contingent resources in future planned developments:

- In producing fields (including incremental projects).
- Where development plans are under discussion but have not yet been approved.

Contingent resources in other discoveries:

 The NSTA assessed Contingent Resources in other Discoveries based on in-house information compiled from a variety of sources.

Resource confidence levels are defined as follows:

- 1C: Resource volumes that on the available evidence, are virtually certain to be technically producible, i.e. have a better than 90% chance of being producible.
- 2C: Resource volumes that are not yet 1C, but which are estimated to have a better than 50% chance of being technically producible.
- **3C:** Resource volumes that at present cannot be regarded as 2C, but which are estimated to have a significant more than 10% but less than 50% chance of being technically producible and has an associated well location and plan.

Prospective resources

Undiscovered potentially recoverable resources in mapped leads and prospects that have not yet been drilled, plus those undiscovered potentially recoverable resources that are estimated to reside in plays for which there are few or no mapped features.

Prospective resource category definitions:

 A lead is a trapping feature that is associated with a speculative volumetric and chance-of-success assessment.

- and requires additional seismic analysis/acquisition or other key data in order to progress to a prospect.
- A prospect-under-evaluation is a robust trap that has been mapped with a higher degree of confidence using good quality seismic and other key data.
- A drill-ready-prospect requires no further evaluation and has an associated well location and plan.

Appendix C

Central North Sea and Moray Firth

- Eocene (Proven)
- Paleocene (Proven)
- Upper Cretaceous (Proven)
- Lower Cretaceous (Proven)
- Upper Jurassic (Proven)
- Middle Jurassic (Proven)
- Lower Jurassic (Proven)
- Triassic (Proven)
- Devonian (Proven)

Plays not included: Rotliegend, Carboniferous.

Forth Approaches Basin

- Carboniferous (Unproven)
- Rotliegend (Unproven)

Plays not included: Zechstein Dolomites.

Mid North Sea High

- Zechstein (Proven)
- Rotliegend (Unproven)
- Carboniferous (Unproven)
- Devonian (Unproven)

Northern North Sea and East Shetland Platform

- Eocene (Proven)
- Upper Paleocene (Proven)
- Middle Jurassic (Proven)
- Lower Jurassic (Proven)
- Triassic (Proven)
- Devonian (Unproven)

Plays not included: Upper Jurassic interpreted as fully mapped therefore excluded. Upper and Lower Cretaceous excluded as these have been interpreted to be non-reservoir bearing intervals. Intervals younger than Eocene excluded due to biodegradation risk.

West of Shetland (Faroe-Shetland Basin)

- Paleocene (Proven)
- Upper Cretaceous (Proven)
- Lower Cretaceous (Proven)
- Jurassic (Proven)
- Triassic (Proven)

Plays not included: Fractured Basement.

Rockall Trough

- Triassic (Unproven)
- Middle Jurassic (Unproven)
- Upper Jurassic (Unproven)
- Lower Cretaceous (Unproven)
- Paleocene (Partially Proven)

Southern North Sea

- Triassic (Proven)
- Zechstein (Proven)
- Rotliegend (Proven)
- Carboniferous (Proven)

Plays not included: Intra-Carboniferous, Tight-Gas.

South West Britain (including SW Approaches and Cardigan Bay)

- Triassic (Unproven)
- Middle Jurassic (Proven)
- Permian (Unproven)

Plays not included: Carboniferous

Appendix D

Table D3 oil reserves and resources as at end 2024 (2023) in million tonnes

Oil	1P	2P	3Р
Oil reserves	171	261	319
	(196)	(302)	(359)
Oil contingent resources	1C	2C	3C
Producing fields	102	130	172
	(108)	(139)	(188)
Proposed new developments	140	173	200
	(144)	(177)	(213)
Licensed marginal discoveries	44	111	247
	(26)	(79)	(182)
Unlicensed marginal discoveries	56 (63)	156 (167)	309 (325)
Total contingent resources	343	570	928
	(341)	(562)	(909)

Table D4 gas reserves and resources as at end 2024 (2023) in billion cubic metres

Gas	1P	2P	3P
Gas reserves	103	148	193
	(119)	(173)	(215)
Gas contingent resources	1C	2C	3C
Producing fields	35	62	77
	(55)	(91)	(120)
Proposed new developments	19	28	38
	(18)	(26)	(36)
Licensed marginal discoveries	43	95	175
	(26)	(62)	(114)
Unlicensed marginal discoveries	65 (58)	139 (124)	255 (231)
Total contingent resources	160	324	547
	(157)	(303)	(504)

Table D5 gas reserves by field type as at end 2024 (2023) in billion cubic metres

Fields in production or under development	1P	2P	3P
Gas reserves from dry gas fields	36	48	64
	(42)	(58)	(77)
Gas reserves from gas condensate fields	44	68	88
	(51)	(79)	(94)
Gas reserves from associated gas from oil fields	23	32	41
	(26)	(36)	(43)

Table D6 gas contingent resources by field type as at end 2024 (2023) in billion cubic metres

Fields where proposed development plans are under discussion	1C	2C	3C
Gas resources from dry gas fields	19	39	47
	(20)	(40)	(49)
Gas resources from gas condensate fields	14	20	28
	(14)	(20)	(27)
Gas resources from associated gas from oil fields	21	30	41
	(39)	(57)	(81)

